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Abstract

A brief outline of the Lorentz Integral Transform method is given. Recent
results for the inclusive electrodisintegration of 3He and 4He are discussed. The
energy resolution that can be obtained with the LIT approach is studied and it
is shown that the LIT method is a method with a controlled resolution. The
final part discusses the role of the isoscalar monopole resonance of 4He in (e, e′)
scattering.
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1 Introduction

Integral transforms are of common use in physics. In general they have the following
form

Φ(σ) =

∫

dEK(E, σ)R(E), (1)

whereK(E, σ) is a well defined kernel and whereR(E) is an energy dependent response
function of the system under consideration. Often it is very difficult or even impossible
to determine R(E) in a direct calculation, in particular when a many-body continuum
wave function should be calculated. In such cases one may consider to determine
directly the integral transform Φ(σ), i. e. without knowledge of R(E). Then, the
response function R(E) can be obtained from the inversion of the integral transform.

In the following we will discuss the Lorentz integral transform (LIT) L(σ) [1, 2].
In the past the LIT approach has been applied to a variety of inelastic electroweak
reactions [2, 3]. Because of the specific form of the kernel and different from many
other integral transforms, the LIT is an integral transform with a controlled resolution.
The kernel L(E, σ) of the LIT is of Lorentzian shape:

L(E, σ) =
1

(E − σR)2 + σ2
I

(2)

(σ = σR + iσI). It is evident that the parameter σI controls the width of the
Lorentzian. A reduced value for σI leads to a higher energy resolution, however,
at the same time one has also to increase the precision of the calculation. This point
will be discussed in greater detail in Sect. 3.

The LIT L(σ) is calculated by solving an equation of the form

(H − σ) Ψ̃ = S, (3)
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where H is the Hamiltonian of the system under consideration and S is an asymp-
totically vanishing source term. The solution Ψ̃ is localized. This a very important
property, since it allows to determine Ψ̃ with bound-state methods, even in case that
the direct calculation of the response function R(E) constitutes a continuum state
problem. Having calculated Ψ̃ one obtains the LIT from the following expression:

L(σ) = 〈Ψ̃|Ψ̃〉. (4)

The response function R(E) is determined from the calculated L(σ) by inverting the
equation

L(σ) =

∫

dE
R(E)

(E − σR)2 + σ2
I

. (5)

A general discussion of the inversion and details about various inversion methods are
given in Refs. [2, 4, 5].

An alternative way to write the LIT is given by

L(σ) = −
1

σI
Im

(

〈

S
∣

∣

∣

1

σR + iσI −H

∣

∣

∣
S
〉

)

. (6)

This reformulation is useful since it allows a direct application of the Lanczos al-
gorithm for the determination of L(σ) [6]. In fact the calculations discussed in the
following sections are performed in this way by using expansions in hyperspherical
harmonics (HH). The convergence is accelerated by introducing additional two-body
correlations in case of three-nucleon applications (CHH), while for the four-body sys-
tem an effective interaction approach is used (EIHH [7]).

2 Electron scattering off 3,4He

In order to calculate a specific reaction one has to specify the source term S in Eqs. (3)
and (6). In case of unpolarized inclusive electron scattering one has a longitudinal
response function RL(q, ω) and a transverse response function RT (q, ω), where q and ω
describe momentum and energy transfer of the electron to the nucleus. The source
term S takes the following form:

|S〉 = θ|0〉, (7)

where θ is a specific transition operator and |0〉 is the ground-state wave function of the
nucleus. For the response functions RL(q, ω) and RT (q, ω) the transition operator θ
corresponds to the nuclear charge and current operator, respectively.

2.1 Transverse response function RT (q, ω) of 3He
in the quasi-elastic region

The inclusive transverse response function RT (q, ω) of
3He in inelastic electron scat-

tering has recently been considered with the LIT method at momentum transfers rang-
ing from 500 to 700 MeV/c [8]. Besides the usual non-relativistic nucleon one-body
currents various additional current operators have been taken into account: meson
exchange currents (MEC) [9,10], isobar currents involving the ∆ resonance (IC) [11],
and relativistic corrections to the non-relativistic nucleon one-body currents [12]. In
order to circumvent problems with special relativity the calculation is performed in
the so-called active nucleon Breit (ANB) frame which moves with −3q/2 with respect
to the laboratory frame. In order to compare with experimental data the RT result
is then transformed to the laboratory system. As nuclear force a realistic nuclear
interaction has been considered, which consists in the AV18 NN potential [13] and
the UIX three-nucleon force [14].
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Figure 1: Transverse response function RT (q, ω) of 3He at q = 500, 600, and
700 MeV/c with force model AV18+UIX; experimental data from [15–17].

In Fig. 1 the resulting response function RT (q, ω) is shown. One observes an
excellent agreement with experimental data in the whole quasi-elastic peak region
for all three considered momentum transfers. It should be pointed out that for the
good agreement with experiment it is necessary to control, to some extent, problems
due to special relativity (ANB frame) and to include both IC and relativistic correc-
tions of the nucleon one-body current, whereas MEC are of less importance in the
3He quasi-elastic peak region. The IC contribution is particularly interesting: (i) it
cancels the effect of the three-nucleon force (3NF) in the peak region and (ii) in the
isospin T = 3/2 channel of the disintegrated nucleus one finds an important IC con-
tribution beyond the peak region; this isospin channel contributes exclusively to the
three-body break-up of 3He and thus IC should be included in the calculation of such
reactions.

From the results in Fig. 1 it is evident that the LIT approach allows calculations
of reactions up into the far many-body continuum. This is quite remarkable since no
continuum wave functions are calculated and only bound-state methods are applied.

2.2 Longitudinal response function RL(q, ω) of 4He
at lower momentum transfer

Up to present realistic LIT calculations for the 4He electrodisintegration have been
performed for RL [18, 19] only, whereas for RT a LIT calculation [20] with the cen-
tral NN potential MTI/III [21] exists. The results for the longitudinal response are
particularly interesting at lower momentum transfer since 3NF effects become quite
important. Also at higher momentum transfer 3NF effects are non-negligible, but
less important (below 10%). In Fig. 2 the 4He RL(q, ω) of [18] is shown at various
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Figure 2: RL(q, ω) of
4He with force models AV18 (dashed), MTI/III (dash-dotted),

and AV18+UIX (solid).

low momentum transfers for nuclear force models AV18 and AV18+UIX. In the low-
energy region one finds a considerable decrease due 3NF which reaches almost 50%
at q = 50 MeV/c. In Fig. 2 also a result with the MTI/III potential is depicted.
Different from the realistic nuclear force models the MTI/III potential overestimates
the 4He binding energy by a few MeV. Nonetheless the MTI/III RL lies between
the AV18 and AV18+UIX results. This shows that the large 3NF effect cannot be
caused just by a 3NF effect on the 4He ground state, but that 3NF effects on the
nuclear continuum wave function lead to essential contributions. In Ref. [19] also RL

results for force model AV18+TM’ are included (TM’ 3NF from Ref. [22]). In Fig. 3
we illustrate results from this reference for q = 50 MeV. Relatively large differences
can be seen between the AV18+UIX and the AV18+TM’ results, although both force
models lead to almost equal 4He binding energies.

3 Energy resolution with the LIT approach

It was already mentioned in the introduction that the LIT approach is a method with
a controlled resolution. Here this aspect is illustrated in greater detail. A solution
of the LIT equation (6) via an expansion on a basis with N basis functions can be
understood as follows. One determines the spectrum of the Hamiltonian on this basis
thus finding N eigenenergiesEn. Furthermore, the solution assigns to any eigenenergy
a strength in form of a Lorentzian with height Ln and width σI . It should be noticed
that the source term |S〉 affects only the height Ln. The LIT result then reads

L(σ) =

N
∑

i=1

Ln

(σR − En)2 + σ2
I

. (8)
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Figure 3: As Fig. 2 but for force models AV18 (dashed), AV18+TM’ (dash-dotted),
and AV18+UIX (solid).

Note that this result is related to the so-called Lanczos response RLnczs by

RLnczs(E, σI) =
σI
π
L(E, σI). (9)

In the limit σI → 0 the Lanczos response is equal to the true response function R(E).
However, one often calculates RLnczs for a small but finite σI value and identifies the
Lanczos response with the true response, which in general is an uncontrolled approx-
imation. In the LIT approach one does not make such an identification of transform
and response function. A proper treatment requires an inversion. From a practical
point of view such a correct treatment is even advantageous, since the computational
effort is much less. In fact, it allows to work with a not too small σI , thus with a
relatively small number of basis functions N . Only in case of structures, which change
rapidly with energy, e. g. resonances, one might need σI values of the order of the
resonance width. To give a better understanding of the energy resolution with the
Lorentz integral transform method also here deuteron photodisintegration in unre-
tarded dipole approximation is considered as a simple example. The corresponding
cross section is given by

σunret(ω) = 4π2αωRunret(ω), (10)

where ω denotes the photon energy and α is the fine structure constant. The rele-
vant transition operator for the calculation of Runret(ω) is the dipole operator θ =
∑

i zi(1 + τi,z)/2, where zi and τi,z are the z-components of the position vector and of
the isospin operator of the ith nucleon, respectively. For the deuteron case the dipole
operator allows only transitions to the following np final states: 3P0,

3P1, and
3P2-

3F2.
For simplicity in the following example only transitions to 3P1 are considered. The
following ansatz for the corresponding Ψ̃ is made:

|Ψ̃〉 = ψ̃(r) |(l = 1, S = 1)j = 1〉 |T = 1〉, (11)

where r (T = 1) is the relative distance (isospin) of the np pair. The resulting LIT
equation can be easily solved by direct numerical methods or by expansions of ψ̃(r) on
a complete set. Since in case of nuclei with A > 2 we are generally using expansions
on hyperspherical harmonics, where the hyperradial part is expanded in Laguerre

polynomials L
m+ 1

2

n times an exponential fall-off, here a corresponding ansatz is made:

ψ̃(r) =

N
∑

n=1

cn r L
1+ 1

2

n (r/b) exp(−r/2b), (12)
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where cn is a normalization factor and b a constant.

A comparison of results with the Lanczos response and inversion results was made
in Ref. [2] for the simple example of deuteron photodisintegration in unretarded dipole
approximation. In this case one can check the quality of the results by comparing
with a conventional calculation, where np continuum wave function are calculated.
The study of Ref. [2] has shown that within the LIT approach it is sufficient to use
a rather large value of 10 MeV for σI and hence a basis with a rather low N . On
the contrary for the Lanczos response, even when using σI = 0.25 MeV with a quite
high number of basis states, it was not possible to reproduce the R(E) sufficiently
correctly.

In Figs. 4–6 LIT results for the 3P1 channel are shown for various values of N
and σI . To obtain the 3P1 part of the unretarded deuteron photodisintegration cross
section one has to invert these transforms. However, in order to make a reliable
inversion L(σ) should be sufficiently converged for a given σI . In particular isolated
peaks of single Lorentzians should not appear, i. e. for any σR value one should
have a significant contribution from various Lorentzians. The results of Figs. 4–6
show that the convergence pattern is quite different for the various σI . For the case
with the lowest resolution (σI = 2.5 MeV) one obtains a sufficiently converged L(σ)
already with 30 basis functions (N = 30). For the case with σI = 1 MeV one
is close to convergence with N = 50, whereas the LIT for the highest requested
resolution (σI = 0.1 MeV) is quite far from convergence even with N = 50. For the
latter case the number of basis functions should be increased considerably to obtain a
converged L(σ). It is evident that a higher resolution requires a higher computational
effort. In an actual calculation one should check what is the lowest σI value with a
sufficiently converged LIT. Structures which are considerably smaller than such a σI
value cannot be resolved by the inversion. A helpful criterion is given in Ref. [23] (see
discussion of Fig. 7 in Ref. [23]).

From the discussion above it is evident that the LIT approach is a method with a
controlled resolution.
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Figure 4: Deuteron photodisintegration in unretarded dipole approximation: LIT
result for np channel 3P1 with σI = 2.5 MeV.



232 Winfried Leidemann

0

0.25

0.5

N = 10

0

0.25

0.5

N = 20

0

0.25

0.5

L(
σ)

 [a
rb

itr
ar

y 
un

its
]

N = 30

0

0.25

0.5

N = 40

0 10 20 30
σ

R 
  [MeV]

0

0.25

0.5

N = 50

σ
I 
 = 1 MeV

Figure 5: As Fig. 4 but with σI = 1 MeV.
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Figure 6: As Fig. 4 but with σI = 0.1 MeV.

4 Isoscalar monopole resonance of 4He

The 0+ resonance of 4He can be studied in hadronic and electron scattering reac-
tions. The signal of the resonance is much more pronounced in the latter case and
thus electron scattering experiments of 4He are the proper tool to study the reso-
nance. In fact the pronounced cross section peak has been studied in various (e, e′)
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experiments [24–26]. There it has been found that the resonance is located be-
tween the two thresholds for the break-up in 3H-p and 3He-n and that the width
is about 300 keV. In addition, the resonance strength has been measured over a
rather large momentum transfer range.

In Ref. [27] a LIT calculation of the isoscalar monopole part ofRL(q, ω) of
4He(e, e′)

has been performed using the nuclear force model AV18+UIX and a chiral nuclear
force model with the Idaho N3LO NN potential [28] supplemented by a 3NF in N2LO
in two different parameterizations. The calculation shows that both interaction mod-
els overestimate the resonance position by about 700 keV and sufficiently convergent
LIT results could only be obtained for σI ≥ 5 MeV. Such a resolution, much larger
than the experimental width of 300 keV, is of course not sufficient to determine the
detailed resonance structure. On the other hand it has been possible to separate the
background strength from the resonance strength. For details of this separation I
refer to Ref. [27]. Here it should only be mentioned that this is not a trivial task
and that it has been achieved by an appropriate inversion procedure, which gave the
energy distribution of the background strength and the total resonance strength.

In Fig. 7 the calculated resonance strength is compared to the above mentioned ex-
perimental data. One sees that the two realistic interaction models exhibit rather dif-
ferent results: the AV18+UIX force leads to a resonance strength which is about 20%
lower than that of the chiral force model. Thus the 4He resonance strength turns out
to be an observable which is very selective concerning force models. In Fig. 7 it
can also be seen that even with force model AV18+UIX the experimental resonance
strength is overestimated considerably. As discussed in detail in Ref. [27] it is not
easy to understand what causes the difference of theoretical and experimental results
(e. g., the calculated elastic 4He form factor agree well with experimental data up to
about q2 = 4 fm−2 for both potential models). In Fig. 7 an additional theoretical
result [29] is shown for a force model consisting in the AV8’ NN potential and a
simplistic 3NF. One observes a nice agreement with the experimental data. However,
the calculation cannot be considered to be fully realistic (the not completely realistic
potential model has led to a second 0+ bound state and not to a resonance in the
continuum).

One might ask how the width of the 4He 0+ resonance can be resolved with the
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LIT method. That the method is in principle capable to resolve a resonance with such
a small width has been shown in Ref. [23] in a model study. In the present case one
could increase the HH basis or increase the size of the box, but this might not lead to a
much improved result. Probably it is better to describe the four-body system as 3+1
system with an HH expansion for the three-body part and a separate expansion for
the relative motion of nucleon and residual system, of course, always with bound-state
methods. Such an approach would be in close analogy to a scattering calculation for
a two-body break-up.

5 Summary

An overview has been given on recent LIT applications for the inclusive electrodis-
integration of 3He and 4He with realistic nuclear force models. The results for the
transverse response function RT (q, ω) of

3He show (i) that an excellent agreement with
experimental data is obtained in the quasi-elastic peak region at higher momentum
transfers and (ii) that the LIT method can be applied also to reactions with energies
far into the many-body continuum. For 4He, results of the longitudinal response func-
tion RL(q, ω) of 3He have been reported. They exhibit strong 3NF effects at lower
momentum transfers. In addition it has been discussed that a theoretical study for
the isoscalar monopole part of the RL of 4He reveals (i) a strong dependence of the
resonance strength on the nuclear force model and (ii) a considerable overestimation
of the experimental resonance strength.

The energy resolution that can be obtained with the LIT method has also been
discussed in greater detail. The discussion shows that the LIT approach is a method
with a controlled resolution.

References

[1] V. D. Efros, W. Leidemann and G. Orlandini, Phys. Lett. B 338, 130 (1994).

[2] V. D. Efros, W. Leidemann G. Orlandini and N. Barnea, J. Phys. G 34, R459
(2007).

[3] W. Leidemann and G. Orlandini, Progr. Part. Nucl. Phys. 68, 158 (2013).

[4] D. Andreasi, W. Leidemann, Ch. Reiss and M. Schwamb, Eur. Phys. J. A 24, 361
(2005).

[5] N. Barnea, V. D. Efros, W. Leidemann and G. Orlandini, Few-Body Syst. 47, 201
(2010).

[6] M. A. Marchisio, N. Barnea, W. Leidemann and G. Orlandini, Few-Body Syst.
33, 259 (2003).

[7] N. Barnea, W. Leidemann and G. Orlandini, Phys. Rev. C 61, 54001 (2000); Nucl.
Phys. A 693, 565 (2001).

[8] L. Yuan, W. Leidemann, V. D. Efros, G. Orlandini and E. L. Tomusiak, Phys.
Lett. B 706, 90 (2011).

[9] S. Della Monaca, V. D. Efros, A. Khugaev, W. Leidemann, G. Orlandini, E. L. To-
musiak and L. P. Yuan, Phys. Rev. C 77, 044007 (2008).

[10] W. Leidemann, V. D. Efros, G. Orlandini and E. L. Tomusiak, Few-Body Syst.
47, 157 (2010).



Recent results with the LIT method 235

[11] L. Yuan, V. D. Efros, W. Leidemann and E. L. Tomusiak, Phys. Rev. C 82,
054003 (2010).

[12] V. D. Efros, W. Leidemann, G. Orlandini and E. L. Tomusiak, Phys. Rev. C 81,
034001 (2010).

[13] R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

[14] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper and R. B. Wiringa,
Phys. Rev. C 56, 1720 (1997).

[15] C. Marchand et al., Phys. Lett. B 153, 29 (1985).

[16] K. Dow et al., Phys. Rev. Lett. 61, 1706 (1988).

[17] J. Carlson, J. Jourdan, R. Schiavilla and I. Sick, Phys. Rev. C 65, 024002 (2002).

[18] S. Bacca, N. Barnea, W. Leidemann and G. Orlandini, Phys. Rev. Lett. 102,
162501 (2009).

[19] S. Bacca, N. Barnea, W. Leidemann and G. Orlandini, Phys. Rev. C 80, 064001
(2009).
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