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Abstract

We report on ab initio no-core shell model calculations in a symmetry-
adapted SU(3)-based coupling scheme that demonstrate that collective modes
in p-shell nuclei emerge from first principles. The low-lying states of 6Li, 6He,
8Be, 8B, 12C, and 16O, are shown to exhibit orderly patterns that favor spa-
tial configurations with strong quadrupole deformation and complementary low
intrinsic spin values, a picture that is consistent with the nuclear symplectic
model. The results also suggest a pragmatic path forward to accommodate
deformation-driven collective features in ab initio analyses when they dominate
the nuclear landscape.
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1 Introduction

In the last few years, ab initio approaches to nuclear structure and reactions have
considerably advanced our understanding and capability of achieving first-principle
descriptions of p-shell nuclei [1–3]. These advances are driven by the major progress
in the development of realistic nuclear potential models, such as J-matrix inverse
scattering potentials [4] and two- and three-nucleon potentials derived from meson
exchange theory [5] or by using chiral effective field theory [6], and, at the same time,
by the utilization of massively parallel computing resources [7–9].

The predictive power that ab initio models hold [10, 11] makes them suitable for
targeting short-lived nuclei that are inaccessible by experiment but essential to further
modeling, for example, of the dynamics of X-ray bursts and the path of nucleosynthesis
(see, e. g., Refs. [12, 13]). The main limitation of ab initio approaches is inherently
coupled with the combinatorial growth in the size of the many-particle model space
with increasing nucleon numbers and expansion in the number of single-particle levels
in the model space as illustrated in Fig. 1. This points to the need of further major
advances in many-body methods to access a wider range of nuclei and experimental
observables, while retaining the ab initio predictive power.

These considerations motivate us to develop and investigate a novel model, the ab
initio symmetry-adapted no-core shell model (SA-NCSM) [14], which by taking ad-
vantage of symmetries inherent to the nuclear dynamics [15,16] allows one to truncate
a model space according to correlations indispensable for modeling important modes
of nuclear collective dynamics, thereby overcoming the scale explosion bottleneck of
ab initio nuclear structure computations.
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Figure 1: The dimensions of positive parity model spaces as functions of Nmax for
selected nuclei. Solid curves show the number of basis states with the projection of
the total angular momentum M = 0. Dashed and dotted curves depict the number
of basis states carrying selected values of the total angular momentum J .

2 Ab initio calculations in a SU(3)-based coupling
scheme

The SA-NCSM joins a no-core shell model (NCSM) theory [2] with a multi-shell,
SU(3)-based coupling scheme [15, 17]. Specifically, the many-nucleon basis states
of the SA-NCSM are decomposed into spatial and intrinsic spin parts, where the
spatial part is further classified according to the SU(3) ⊃ SO(3) group chain. The
significance of the SU(3) group for a microscopic description of the nuclear collective
dynamics can be seen from the fact that it is the symmetry group of the successful
Elliott model [15], and a subgroup of the physically relevant Sp(3,R) symplectic
model [16], which provides a comprehensive theoretical foundation for understanding
the dominant symmetries of nuclear collective motion. The SA-NCSM basis states
are labeled as

|~γ;N(λµ)κL; (SpSn)S; JM〉, (1)

where N signifies the number of harmonic oscillator quanta with respect to the min-
imal number for a given nucleus. Quantum numbers Sp, Sn, and S denote proton,
neutron, and total intrinsic spins, respectively, and (λµ) represent a set of quan-
tum numbers associated with SU(3) irreducible representations, irreps. The label κ
distinguishes multiple occurrences of the same orbital momentum L in the parent
irrep (λµ). The L is coupled with S to the total angular momentum J and its projec-
tion M . The basis states bring forward important information about nuclear shapes
and deformation according to an established mapping [18]. For example, (00), (λ 0)
and (0µ) describe spherical, prolate and oblate shapes, respectively. The symbol ~γ
schematically denotes the additional quantum numbers needed to specify a distribu-
tion of nucleon clusters over the major HO shells and their inter-shell coupling. Specif-
ically, in each major HO shell η with degeneracy Ωη, clusters of protons and neutrons
are arranged into antisymmetric U(Ωη) × SU(2)Sη

irreps [19], with U(Ωη) further
reduced with respect to SU(3). The quantum numbers,

[

f1, . . . , fΩη

]

αη (λη µη)Sη,
along with SU(3) × SU(2)S labels of inter-shell coupling unambiguously determine
SA-NCSM basis states (1). Note that a spatial symmetry associated with a Young
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shape
[

f1, . . . , fΩη

]

is uniquely determined by the imposed antisymmetrization and
the associated intrinsic spin Sη. A multiplicity index αη is required to distinguish
multiple occurrences of SU(3) irrep (λη µη) in a given U(Ωη) irrep. It is important to
note that any model space spanned by a complete set of equivalent SU(3) × SU(2)S
irreps, that is, a space spanned by all configurations carrying a fixed set of Sp Sn S
and (λµ) quantum numbers, permits exact factorization of the center-of-mass motion.

The SA-NCSM implements fast methods for calculating matrix elements of ar-
bitrary (currently up to two-body, but expandable to higher-rank) operators in the
symmetry-adapted basis. This facilitates both the evaluation of the Hamiltonian ma-
trix elements and the use of the resulting eigenvectors to evaluate other experimental
observables. The underlying principle behind the SA-NCSM computational kernel is
an SU(3)-type Wigner–Eckhart theorem, which factorizes interaction matrix elements
into the product of SU(3) reduced matrix elements (rme) and the associated SU(3)
coupling coefficient. The SA-NCSM configurations are constructed by the inter-shell
coupling of a sequence of single-shell nucleon clusters arranged into U(Ω) × SU(2)S ,
with U(Ω) ⊃ SU(3), irreps. Therefore, all the multi-shell rme are constructed from a
set of single-shell rme computed in a configuration space of these irreps. This reduces
the number of key pieces of information required to the single-shell rme, and these
track with the number of U(Ω) × SU(2)S irreps, with U(Ω) ⊃ SU(3), that represent
building blocks of the SA-NCSM approach. It is therefore significant that their num-
ber grows slowly with the increasing nucleon number and Nmax cutoff as this allows
these key pieces of information to be stored in CPU memory.

3 Structure of nuclear wave functions

The expansion of calculated eigenstates in the physically relevant SU(3) basis unveils
salient features that emerge from the complex dynamics of these strongly interacting
many-particle systems. To explore the nature of the most important correlations, we
analyze the probability distribution across Pauli-allowed (Sp Sn S) and (λµ) configu-
rations of the four lowest-lying isospin-zero (T = 0) states of 6Li (1+gs, 3+1 , 2+1 , and 1+2 ),
the ground-state rotational bands of 8Be, 6He and 12C, the lowest 1+, 3+, and 0+ ex-
cited states of 8B, and the ground state of 16O. Results for the ground state of 6Li and
8Be, obtained with the JISP16 and chiral N3LO interactions, respectively, are shown
in Figs. 2 and 3. These figures illustrates a feature common to all the low-energy
solutions considered; namely, a highly structured and regular mix of intrinsic spins
and SU(3) spatial quantum numbers that has heretofore gone unrecognized in other
ab initio studies, and which, furthermore, does not seem to depend on the particular
choice of realistic NN potential.

For a closer look at these results, first consider the spin content. We found that
the calculated eigenstates project at a 99% level onto a comparatively small subset
of intrinsic spin combinations. For instance, the lowest-lying eigenstates in 6Li are
almost entirely realized in terms of configurations characterized by the following in-
trinsic spin (Sp Sn S) triplets:

(

3
2

3
2 3

)

,
(

1
2

3
2 2

)

,
(

3
2

1
2 2

)

, and
(

1
2

1
2 1

)

, with the last one
carrying over 90% of each eigenstate. Likewise, the same spin components as in the
case of 6Li are found to dominate the ground state and the lowest 1+, 3+, and 0+

excited states of 8B (Table 1). The ground state bands of 8Be, 6He, 12C, and 16O are
found to be dominated by many-particle configurations carrying total intrinsic spin
of the protons and neutrons equal to zero and one, with the largest contributions due
to (Sp Sn S) = (0 0 0) and (1 1 2) configurations.

Second, consider the spatial degrees of freedom. Our results show that the mixing
of (λµ) quantum numbers, induced by the SU(3) symmetry breaking terms of realistic
interactions, exhibits a remarkably simple pattern. One of its key features is the
preponderance of a single 0~Ω SU(3) irrep. This so-called leading irrep, according to
the established geometrical interpretation of SU(3) labels (λµ) [18], is characterized
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Figure 2: Probability distributions for proton, neutron, and total intrinsic spin com-
ponents (Sp Sn S) across the Pauli-allowed (λµ) values (horizontal axis) for the cal-
culated 1+ ground state of 6Li obtained for Nmax = 10 and ~Ω = 20 MeV with the
JISP16 interaction. The total probability for each N~Ω subspace is given in the upper
left-hand corner of each histogram. Adapted from Ref. [14].

by the largest value of the intrinsic quadrupole deformation. For instance, the low-
lying states of 6Li project at a 40%–70% level onto the prolate 0~Ω SU(3) irrep (2 0),
as illustrated in Figs. 2 and 3 for the ground state. For the considered states of

Table 1: Probability amplitude of the dominant (Sp Sn S) spin configuration and the
dominant nuclear shapes according to Eq. (2) for the ground state of p-shell nuclei.

Nucleus (Sp Sn S) Prob. [%] (λ0 µ0) Prob. [%]

6Li
(

1
2

1
2 1

)

93.26 (2 0) 98.13
8B

(

1
2

1
2 1

)

85.17 (2 1) 87.94
8Be (0 0 0) 85.25 (4 0) 90.03
12C (0 0 0) 55.19 (0 4) 48.44
16O (0 0 0) 83.60 (0 0) 89.51
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Figure 3: Probability distributions for proton, neutron, and total intrinsic spin com-
ponents (Sp Sn S) across the Pauli-allowed (λµ) values (horizontal axis) for the cal-
culated 0+ ground state of 8Be obtained for Nmax = 8 and ~Ω = 25 MeV with the
chiral N3LO interaction. The total probability for each N~Ω subspace is given in the
upper left-hand corner of each histogram. Adapted from Ref. [14].

8B, 8Be, 12C, and 16O, qualitatively similar dominance of the leading 0~Ω SU(3)
irreps is observed — (2 1), (4 0), (0 4), and (0 0) irreps, associated with triaxial,
prolate, oblate, and spherical shapes, respectively. The clear dominance of the most
deformed 0~Ω configuration within low-lying states of light p-shell nuclei indicates
that the quadrupole-quadrupole interaction of the Elliott SU(3) model of nuclear
rotations [15] is realized naturally within an ab initio framework.

The analysis also reveals that the dominant SU(3) basis states at each N~Ω sub-
space (N = 0, 2, 4, ...) are typically those with (λµ) quantum numbers given by

λ + 2µ = λ0 + 2µ0 + N (2)

where λ0 and µ0 denote labels of the leading SU(3) irrep in the 0~Ω (N = 0) subspace.
We conjecture that this regular pattern of SU(3) quantum numbers reflects the pres-
ence of an underlying symplectic Sp(3,R) symmetry of microscopic nuclear collective
motion [16] that governs the low-energy structure of both even-even and odd-odd
p-shell nuclei. This can be seen from the fact that (λµ) configurations that satisfy
condition (2) can be determined from the leading SU(3) irrep (λ0 µ0) through a succes-
sive application of a specific subset of the Sp(3,R) symplectic 2~Ω raising operators.
This subset is composed of the three operators, Âzz , Âzx, and Âxx, that distribute
two oscillator quanta in z and x directions, but none in y direction, thereby inducing
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SU(3) configurations with ever-increasing intrinsic quadrupole deformation. These
three operators are the generators of the Sp(2,R) ⊂ Sp(3,R) subgroup [20], and give
rise to deformed shapes that are energetically favored by an attractive quadrupole-
quadrupole interaction [21]. Note that this is consistent with our earlier findings of a
clear symplectic Sp(3,R) structure with the same pattern (2) in ab initio eigensolu-
tions for 12C and 16O [22].

Furthermore, there is an apparent hierarchy among states that fulfill condition (2).
In particular, the N~Ω configurations with (λ0+N µ0), the so-called stretched states,
carry a noticeably higher probability than the others. For instance, the (2+N 0)
stretched states contribute at the 85% level to the ground state of 6Li, as can be
readily seen in Figs. 2 and 3. Moreover, the dominance of the stretched states is
rapidly increasing with the increasing many-body basis cutoff Nmax as illustrated in
Fig. 4. The sequence of the stretched states is formed by consecutive applications
of the Âzz operator, the generator of Sp(1,R) ⊂ Sp(2,R) ⊂ Sp(3,R) subgroup, over
the leading SU(3) irrep. This translates into distributing N oscillator quanta along
the direction of the z-axis only and hence rendering the largest possible deformation.
The important role of the stretched configurations for the description of the rotational
bands in N = Z even-even nuclei was recognized heretofore using a simple microscopic
Hamiltonian [23]. In the present study, for the first time, this structure is clearly and
simply unveiled within the context of a fully microscopic framework starting from
first principles.

4 Efficacy of the SU(3) basis

The observed patterns of intrinsic spin and deformation mixing supports a symmetry-
guided basis selection philosophy referenced above. Specifically, one can take ad-
vantage of dominant symmetries to refine the definition of the NCSM model space,
which is based solely on the Nmax cutoff. A SA-NCSM model space, which we denote
as 〈N⊥

max〉N
⊤
max, can be constructed using a symmetry-guided selection that includes

the complete basis up through some N⊥
max ≤ Nmax along with configurations carrying

a restricted set of (λµ) and (Sp Sn S) quantum numbers in the N⊥
max to N⊤

max space.
Ultimately, we aim to achieve N⊤

max ≥ Nmax, where Nmax is the largest value for
which complete-space results can be currently calculated. This concept focuses on
retaining the most important configurations that support the strong many-nucleon
correlations of a nuclear system using the underlying Sp(1,R) ⊂ Sp(2,R) ⊂ Sp(3,R)
symmetry considerations. Within this context, it is important to note that for model
spaces truncated according to (λµ) irreps and intrinsic spins (Sp Sn S), the spurious
center-of-mass motion can be factored out exactly, which represents an important
advantage of this scheme.

The efficacy of the symmetry-guided concept is illustrated for SA-NCSM results
obtained in a model space, which is expanded beyond the complete N⊥

max = 6 (or 8)
space by relatively few dominant intrinsic spin components and quadrupole defor-
mations that satisfy condition (2). We use selected spaces up through N⊤

max = 12,
which allows a comparison to available results obtained in the complete Nmax = 12
space and hence, probes the efficacy of the SA-NCSM symmetry-guided model space
selection concept. For this analysis, a Coulomb plus bare JISP16 NN interaction
for ~Ω values ranging from 17.5 up to 25 MeV is used. SA-NCSM eigenstates are
used to determine spectroscopic properties of low-lying T = 0 states of 6Li for a 〈6〉12
model space and of the ground-state band of 6He for 〈8〉12. We utilize a complete
space of N⊥

max = 6 for 6Li and of N⊥
max = 8 for 6He, as these spaces seem sufficient to

accommodate essential mixing of low-energy HO excitations.
The results indicate that the observables obtained in the symmetry-guided trun-

cated spaces under consideration are excellent approximations to the corresponding
complete-space counterparts. In particular, the ground-state binding energies repre-
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Figure 4: Probabilities of the most important (λµ) (Sp Sn S) components in 6Li at 4~Ω subspace (a), 6~Ω subspace (b), 8~Ω subspace (c), and 10~Ω
subspace as a function of the model space cutoff Nmax.
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Figure 5: Experimental and theoretical excitation energies: (a) T = 0 states of 6Li,
and (b) the two lowest-lying states of the halo 6He nucleus. Experimental re-
sults [24] are given in the first column. The theoretical results shown are for JISP16
and ~Ω = 20 MeV in the complete Nmax = 12 space (second column), symmetry-
guided truncated model space (third column) and the complete Nmax = 6 or 8 spaces
(last column). Note the relatively large change in the calculated excitation spectrum
of 6Li when Nmax is increased from 6 to 12, and that the 〈6〉12 SA-NCSM results
(third column) track the latter closely.

sent from 98% up to 98.7% of the complete-space binding energy in the case of 6Li,
and reach over 99% for 6He. Furthermore, the excitation energies differ only by 11 keV
to a few hundred keV from the corresponding complete-space results, see Fig. 5, and
the agreement with known experimental data is reasonable over a broad range of ~Ω
values.

As illustrated in Table 2, the magnetic dipole moments for 6Li agree to within 0.3%
for odd-J values, and 5% for µ(2+1 ). Qualitatively similar agreement is achieved
for µ(2+1 ) of 6He, as shown in Table 3. The results suggest that it may suffice to include
all low-lying ~Ω states up to a fixed limit, e. g., N⊥

max = 6 for 6Li and N⊥
max = 8 for 6He,

to account for the most important correlations that contribute to the magnetic dipole
moment.

To explore how close one comes to reproducing the important long-range correla-
tions of the complete Nmax = 12 space in terms of nuclear collective excitations within

Table 2: Magnetic dipole moments µ [µN ] and point-particle rms matter radii rm [fm]
of T = 0 states of 6Li calculated in the complete Nmax = 12 space and the 〈6〉12
subspace for JISP16 and ~Ω = 20 MeV. The experimental value for the 1+ ground
state is known to be µ = +0.822 µN [24].

1+1 0 3+1 0 2+1 0 1+2 0
µ

Full Nmax = 12 0.838 1.866 0.960 0.336
〈6〉12 0.840 1.866 1.015 0.337

rms
Full Nmax = 12 2.146 2.092 2.257 2.373
〈6〉12 2.139 2.079 2.236 2.355
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Table 3: Selected observables for the two lowest-lying states of 6He obtained in the
complete Nmax = 12 space and 〈8〉12 model subspace for JISP16 and ~Ω = 20 MeV.

Nmax = 12 〈8〉12

B(E2; 2+1 → 0+1 ) [e2fm4] 0.181 0.184
Q(2+1 ) [e·fm2] −0.690 −0.711
µ(2+1 ) [µN ] −0.873 −0.817
rm (2+1 ) [fm] 2.153 2.141
rm (0+1 ) [fm] 2.113 2.110

the symmetry-truncated spaces under consideration, we compared observables that
are sensitive to the tails of the wavefunctions; specifically, the point-particle rms mat-
ter radii, the electric quadrupole moments and the reduced electromagnetic B(E2)
transition strengths that, in addition, could hint at rotational features [25]. As Table 3
clearly shows, the complete-space results for these observables are remarkably well re-
produced by the SA-NCSM for 6He in the restricted 〈8〉12 space. Similarly, the 〈6〉12
eigensolutions for 6Li yield results for B(E2) strengths and quadrupole moments that
track very closely with their complete Nmax = 12 space counterparts for all values
of ~Ω (Fig. 6). The B(E2) strengths almost double upon increasing the model space
from Nmax = 6 to Nmax = 12. This result suggests that further expansion of the
model space will be needed to reach convergence [26]. The close correlation between
the Nmax = 12 and 〈6〉12 results is nevertheless impressive. In addition to being in
agreement, the results reproduce the challenging sign and magnitude of the ground-
state quadrupole moment that is measured to be Q(1+) = −0.0818(17) e·fm2 [24].
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Figure 6: Electric quadrupole transition probabilities in units of e2fm4 [(a) and (b),
as shown], and quadrupole moments in units of e·fm2 (c) as a function of ~Ω
for T = 0 states of 6Li calculated using JISP16 in the complete Nmax = 12 space
(dashed black line), the complete Nmax = 6 space (solid blue line), and symmetry-
truncated 〈6〉12 (solid red line) model spaces. Note that while the Nmax = 6
results differ considerably from their Nmax = 12 counterparts, in all cases the
latter are nearly indistinguishable from the truncated 〈6〉12 results. Experimentally,
B(E2; 1+1 → 3+1 ) = 25.6(20) e2fm4 [24].
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Finally, the results for the rms matter radii of 6Li, listed in Table 2, agree to within 1%.
The differences between truncated-space and complete-space results are found to

be essentially insensitive to the choice of ~Ω and appear sufficiently small as to be
inconsequential relative to the residual dependences on ~Ω and on Nmax (see Fig. 6).
Since the NN interaction dominates contributions from three-nucleon forces (3NFs)
in light nuclei, except for selected cases [27–29], we expect our results to be robust
and carry forward to planned applications that will include 3NFs.

5 Conclusion

We have developed a novel approach that capitalizes on advances being made in ab
initio methods while exploiting exact and partial symmetries of nuclear many-body
system. Using this approach we have demonstrated that the low-lying eigenstates
of 6Li, 8Be, 12C, and 16O, which were obtained using the JISP16 and N3LO NN
interaction, exhibit a strong dominance of few intrinsic spin components and carry
an intriguingly simple pattern of dominant deformations. The results very clearly
underscore the significance of the SU(3) scheme, LS-coupling, and underlying sym-
plectic symmetry in enabling an extension, through symmetry-guided model space
reductions, of ab initio methods to heavier nuclei beyond 16O.
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[2] P. Navrátil, J. P. Vary and B. R. Barrett, Phys. Rev. Lett. 84, 5728
(2000); Phys. Rev. C 62, 054311 (2000); S. Quaglioni and P. Navrátil,
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[28] P. Maris, J. P. Vary, P. Navrátil, W. E. Ormand, H. Nam and D. J. Dean, Phys.
Rev. Lett. 106, 202502 (2011).

[29] P. Maris, J. P. Vary and P. Navrátil, Phys. Rev. C 87, 014327 (2013).


