Utilizing Symmetry Coupling Schemes in *Ab Initio* Nuclear Structure Calculations

T. Dytrych^a, J. P. Draayer^a, K. D. Launey^a, P. Maris^b, J. P. Vary^b and D. Langr^c

^aDepartment of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

^bDepartment of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

^cDepartment of Computer Systems, Czech Technical University, Prague, Czech Republic

Abstract

We report on *ab initio* no-core shell model calculations in a symmetryadapted SU(3)-based coupling scheme that demonstrate that collective modes in *p*-shell nuclei emerge from first principles. The low-lying states of ⁶Li, ⁶He, ⁸Be, ⁸B, ¹²C, and ¹⁶O, are shown to exhibit orderly patterns that favor spatial configurations with strong quadrupole deformation and complementary low intrinsic spin values, a picture that is consistent with the nuclear symplectic model. The results also suggest a pragmatic path forward to accommodate deformation-driven collective features in *ab initio* analyses when they dominate the nuclear landscape.

Keywords: No-core shell model; SU(3) coupling scheme; p-shell nuclei

1 Introduction

In the last few years, *ab initio* approaches to nuclear structure and reactions have considerably advanced our understanding and capability of achieving first-principle descriptions of *p*-shell nuclei [1–3]. These advances are driven by the major progress in the development of realistic nuclear potential models, such as *J*-matrix inverse scattering potentials [4] and two- and three-nucleon potentials derived from meson exchange theory [5] or by using chiral effective field theory [6], and, at the same time, by the utilization of massively parallel computing resources [7–9].

The predictive power that *ab initio* models hold [10, 11] makes them suitable for targeting short-lived nuclei that are inaccessible by experiment but essential to further modeling, for example, of the dynamics of X-ray bursts and the path of nucleosynthesis (see, e. g., Refs. [12, 13]). The main limitation of *ab initio* approaches is inherently coupled with the combinatorial growth in the size of the many-particle model space with increasing nucleon numbers and expansion in the number of single-particle levels in the model space as illustrated in Fig. 1. This points to the need of further major advances in many-body methods to access a wider range of nuclei and experimental observables, while retaining the *ab initio* predictive power.

These considerations motivate us to develop and investigate a novel model, the *ab initio* symmetry-adapted no-core shell model (SA-NCSM) [14], which by taking advantage of symmetries inherent to the nuclear dynamics [15,16] allows one to truncate a model space according to correlations indispensable for modeling important modes of nuclear collective dynamics, thereby overcoming the scale explosion bottleneck of *ab initio* nuclear structure computations.

Proceedings of International Conference 'Nuclear Theory in the Supercomputing Era — 2013' (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 62. http://www.ntse-2013.khb.ru/Proc/Dytrych.pdf.

Figure 1: The dimensions of positive parity model spaces as functions of N_{max} for selected nuclei. Solid curves show the number of basis states with the projection of the total angular momentum M = 0. Dashed and dotted curves depict the number of basis states carrying selected values of the total angular momentum J.

2 Ab initio calculations in a SU(3)-based coupling scheme

The SA-NCSM joins a no-core shell model (NCSM) theory [2] with a multi-shell, SU(3)-based coupling scheme [15, 17]. Specifically, the many-nucleon basis states of the SA-NCSM are decomposed into spatial and intrinsic spin parts, where the spatial part is further classified according to the SU(3) \supset SO(3) group chain. The significance of the SU(3) group for a microscopic description of the nuclear collective dynamics can be seen from the fact that it is the symmetry group of the successful Elliott model [15], and a subgroup of the physically relevant Sp(3, \mathbb{R}) symplectic model [16], which provides a comprehensive theoretical foundation for understanding the dominant symmetries of nuclear collective motion. The SA-NCSM basis states are labeled as

$$|\vec{\gamma}; N(\lambda \mu)\kappa L; (S_p S_n)S; JM\rangle,$$
 (1)

where N signifies the number of harmonic oscillator quanta with respect to the minimal number for a given nucleus. Quantum numbers S_p , S_n , and S denote proton, neutron, and total intrinsic spins, respectively, and $(\lambda \mu)$ represent a set of quantum numbers associated with SU(3) irreducible representations, irreps. The label κ distinguishes multiple occurrences of the same orbital momentum L in the parent irrep $(\lambda \mu)$. The L is coupled with S to the total angular momentum J and its projection M. The basis states bring forward important information about nuclear shapes and deformation according to an established mapping [18]. For example, (00), $(\lambda 0)$ and $(0\,\mu)$ describe spherical, prolate and oblate shapes, respectively. The symbol $\vec{\gamma}$ schematically denotes the additional quantum numbers needed to specify a distribution of nucleon clusters over the major HO shells and their inter-shell coupling. Specifically, in each major HO shell η with degeneracy Ω_{η} , clusters of protons and neutrons are arranged into antisymmetric $U(\Omega_{\eta}) \times SU(2)_{S_{\eta}}$ irreps [19], with $U(\Omega_{\eta})$ further reduced with respect to SU(3). The quantum numbers, $[f_1, \ldots, f_{\Omega_n}] \alpha_\eta (\lambda_\eta \mu_\eta) S_\eta$, along with $SU(3) \times SU(2)_S$ labels of inter-shell coupling unambiguously determine SA-NCSM basis states (1). Note that a spatial symmetry associated with a Young

shape $[f_1, \ldots, f_{\Omega_\eta}]$ is uniquely determined by the imposed antisymmetrization and the associated intrinsic spin S_η . A multiplicity index α_η is required to distinguish multiple occurrences of SU(3) irrep $(\lambda_\eta \mu_\eta)$ in a given U (Ω_η) irrep. It is important to note that any model space spanned by a complete set of equivalent SU $(3) \times SU(2)_S$ irreps, that is, a space spanned by all configurations carrying a fixed set of $S_p S_n S$ and $(\lambda \mu)$ quantum numbers, permits exact factorization of the center-of-mass motion.

The SA-NCSM implements fast methods for calculating matrix elements of arbitrary (currently up to two-body, but expandable to higher-rank) operators in the symmetry-adapted basis. This facilitates both the evaluation of the Hamiltonian matrix elements and the use of the resulting eigenvectors to evaluate other experimental observables. The underlying principle behind the SA-NCSM computational kernel is an SU(3)-type Wigner-Eckhart theorem, which factorizes interaction matrix elements into the product of SU(3) reduced matrix elements (*rme*) and the associated SU(3)coupling coefficient. The SA-NCSM configurations are constructed by the inter-shell coupling of a sequence of single-shell nucleon clusters arranged into $U(\Omega) \times SU(2)_S$, with $U(\Omega) \supset SU(3)$, irreps. Therefore, all the multi-shell *rme* are constructed from a set of single-shell *rme* computed in a configuration space of these irreps. This reduces the number of key pieces of information required to the single-shell *rme*, and these track with the number of $U(\Omega) \times SU(2)_S$ irreps, with $U(\Omega) \supset SU(3)$, that represent building blocks of the SA-NCSM approach. It is therefore significant that their number grows slowly with the increasing nucleon number and $N_{\rm max}$ cutoff as this allows these key pieces of information to be stored in CPU memory.

3 Structure of nuclear wave functions

The expansion of calculated eigenstates in the physically relevant SU(3) basis unveils salient features that emerge from the complex dynamics of these strongly interacting many-particle systems. To explore the nature of the most important correlations, we analyze the probability distribution across Pauli-allowed $(S_p S_n S)$ and $(\lambda \mu)$ configurations of the four lowest-lying isospin-zero (T = 0) states of ⁶Li $(1_{gs}^+, 3_1^+, 2_1^+, \text{ and } 1_2^+)$, the ground-state rotational bands of ⁸Be, ⁶He and ¹²C, the lowest 1⁺, 3⁺, and 0⁺ excited states of ⁸B, and the ground state of ¹⁶O. Results for the ground state of ⁶Li and ⁸Be, obtained with the JISP16 and chiral N³LO interactions, respectively, are shown in Figs. 2 and 3. These figures illustrates a feature common to all the low-energy solutions considered; namely, a highly structured and regular mix of intrinsic spins and SU(3) spatial quantum numbers that has heretofore gone unrecognized in other *ab initio* studies, and which, furthermore, does not seem to depend on the particular choice of realistic NN potential.

For a closer look at these results, first consider the spin content. We found that the calculated eigenstates project at a 99% level onto a comparatively small subset of intrinsic spin combinations. For instance, the lowest-lying eigenstates in ⁶Li are almost entirely realized in terms of configurations characterized by the following intrinsic spin $(S_p S_n S)$ triplets: $(\frac{3}{2} \frac{3}{2} 3)$, $(\frac{1}{2} \frac{3}{2} 2)$, $(\frac{3}{2} \frac{1}{2} 2)$, and $(\frac{1}{2} \frac{1}{2} 1)$, with the last one carrying over 90% of each eigenstate. Likewise, the same spin components as in the case of ⁶Li are found to dominate the ground state and the lowest 1⁺, 3⁺, and 0⁺ excited states of ⁸B (Table 1). The ground state bands of ⁸Be, ⁶He, ¹²C, and ¹⁶O are found to be dominated by many-particle configurations carrying total intrinsic spin of the protons and neutrons equal to zero and one, with the largest contributions due to $(S_p S_n S) = (000)$ and (112) configurations.

Second, consider the spatial degrees of freedom. Our results show that the mixing of $(\lambda \mu)$ quantum numbers, induced by the SU(3) symmetry breaking terms of realistic interactions, exhibits a remarkably simple pattern. One of its key features is the preponderance of a single $0\hbar\Omega$ SU(3) irrep. This so-called leading irrep, according to the established geometrical interpretation of SU(3) labels $(\lambda \mu)$ [18], is characterized

Figure 2: Probability distributions for proton, neutron, and total intrinsic spin components $(S_p S_n S)$ across the Pauli-allowed $(\lambda \mu)$ values (horizontal axis) for the calculated 1⁺ ground state of ⁶Li obtained for $N_{\text{max}} = 10$ and $\hbar \Omega = 20$ MeV with the JISP16 interaction. The total probability for each $N\hbar\Omega$ subspace is given in the upper left-hand corner of each histogram. Adapted from Ref. [14].

by the largest value of the intrinsic quadrupole deformation. For instance, the lowlying states of ⁶Li project at a 40%–70% level onto the prolate $0\hbar\Omega$ SU(3) irrep (20), as illustrated in Figs. 2 and 3 for the ground state. For the considered states of

Table 1: Probability amplitude of the dominant $(S_p S_n S)$ spin configuration and the dominant nuclear shapes according to Eq. (2) for the ground state of *p*-shell nuclei.

Nucleus	$(S_p S_n S)$	Prob. [%]	$(\lambda_0\mu_0)$	Prob. [%]
⁶ Li	$\left(\frac{1}{2},\frac{1}{2},1\right)$	93.26	(20)	98.13
$^{8}\mathrm{B}$	$(\frac{1}{2}, \frac{1}{2}, 1)$	85.17	(21)	87.94
⁸ Be	(000)	85.25	(40)	90.03
$^{12}\mathrm{C}$	(000)	55.19	(04)	48.44
^{16}O	(000)	83.60	(00)	89.51

Figure 3: Probability distributions for proton, neutron, and total intrinsic spin components $(S_p S_n S)$ across the Pauli-allowed $(\lambda \mu)$ values (horizontal axis) for the calculated 0⁺ ground state of ⁸Be obtained for $N_{\text{max}} = 8$ and $\hbar\Omega = 25$ MeV with the chiral N³LO interaction. The total probability for each $N\hbar\Omega$ subspace is given in the upper left-hand corner of each histogram. Adapted from Ref. [14].

⁸B, ⁸Be, ¹²C, and ¹⁶O, qualitatively similar dominance of the leading $0\hbar\Omega$ SU(3) irreps is observed — (2 1), (4 0), (0 4), and (0 0) irreps, associated with triaxial, prolate, oblate, and spherical shapes, respectively. The clear dominance of the most deformed $0\hbar\Omega$ configuration within low-lying states of light *p*-shell nuclei indicates that the quadrupole-quadrupole interaction of the Elliott SU(3) model of nuclear rotations [15] is realized naturally within an *ab initio* framework.

The analysis also reveals that the dominant SU(3) basis states at each $N\hbar\Omega$ subspace (N = 0, 2, 4, ...) are typically those with ($\lambda \mu$) quantum numbers given by

$$\lambda + 2\mu = \lambda_0 + 2\mu_0 + N \tag{2}$$

where λ_0 and μ_0 denote labels of the leading SU(3) irrep in the $0\hbar\Omega$ (N = 0) subspace. We conjecture that this regular pattern of SU(3) quantum numbers reflects the presence of an underlying symplectic Sp(3, \mathbb{R}) symmetry of microscopic nuclear collective motion [16] that governs the low-energy structure of both even-even and odd-odd *p*-shell nuclei. This can be seen from the fact that ($\lambda \mu$) configurations that satisfy condition (2) can be determined from the leading SU(3) irrep ($\lambda_0 \mu_0$) through a successive application of a specific subset of the Sp(3, \mathbb{R}) symplectic $2\hbar\Omega$ raising operators. This subset is composed of the three operators, \hat{A}_{zz} , \hat{A}_{zx} , and \hat{A}_{xx} , that distribute two oscillator quanta in *z* and *x* directions, but none in *y* direction, thereby inducing SU(3) configurations with ever-increasing intrinsic quadrupole deformation. These three operators are the generators of the Sp $(2, \mathbb{R}) \subset$ Sp $(3, \mathbb{R})$ subgroup [20], and give rise to deformed shapes that are energetically favored by an attractive quadrupole-quadrupole interaction [21]. Note that this is consistent with our earlier findings of a clear symplectic Sp $(3, \mathbb{R})$ structure with the same pattern (2) in *ab initio* eigensolutions for ¹²C and ¹⁶O [22].

Furthermore, there is an apparent hierarchy among states that fulfill condition (2). In particular, the $N\hbar\Omega$ configurations with $(\lambda_0+N \mu_0)$, the so-called stretched states, carry a noticeably higher probability than the others. For instance, the (2+N 0) stretched states contribute at the 85% level to the ground state of ⁶Li, as can be readily seen in Figs. 2 and 3. Moreover, the dominance of the stretched states is rapidly increasing with the increasing many-body basis cutoff N_{max} as illustrated in Fig. 4. The sequence of the stretched states is formed by consecutive applications of the \hat{A}_{zz} operator, the generator of $\text{Sp}(1,\mathbb{R}) \subset \text{Sp}(2,\mathbb{R}) \subset \text{Sp}(3,\mathbb{R})$ subgroup, over the leading SU(3) irrep. This translates into distributing N oscillator quanta along the direction of the *z*-axis only and hence rendering the largest possible deformation. The important role of the stretched configurations for the description of the rotational bands in N = Z even-even nuclei was recognized heretofore using a simple microscopic Hamiltonian [23]. In the present study, for the first time, this structure is clearly and simply unveiled within the context of a fully microscopic framework starting from first principles.

4 Efficacy of the SU(3) basis

The observed patterns of intrinsic spin and deformation mixing supports a symmetryguided basis selection philosophy referenced above. Specifically, one can take advantage of dominant symmetries to refine the definition of the NCSM model space, which is based solely on the N_{\max} cutoff. A SA-NCSM model space, which we denote as $\langle N_{\max}^{\perp} \rangle N_{\max}^{\top}$, can be constructed using a symmetry-guided selection that includes the complete basis up through some $N_{\max}^{\perp} \leq N_{\max}$ along with configurations carrying a restricted set of $(\lambda \mu)$ and $(S_p S_n S)$ quantum numbers in the N_{\max}^{\perp} to N_{\max}^{\top} space. Ultimately, we aim to achieve $N_{\max}^{\top} \geq N_{\max}$, where N_{\max} is the largest value for which complete-space results can be currently calculated. This concept focuses on retaining the most important configurations that support the strong many-nucleon correlations of a nuclear system using the underlying $\mathrm{Sp}(1,\mathbb{R}) \subset \mathrm{Sp}(2,\mathbb{R}) \subset \mathrm{Sp}(3,\mathbb{R})$ symmetry considerations. Within this context, it is important to note that for model spaces truncated according to $(\lambda \mu)$ irreps and intrinsic spins $(S_p S_n S)$, the spurious center-of-mass motion can be factored out exactly, which represents an important advantage of this scheme.

The efficacy of the symmetry-guided concept is illustrated for SA-NCSM results obtained in a model space, which is expanded beyond the complete $N_{\text{max}}^{\perp} = 6$ (or 8) space by relatively few dominant intrinsic spin components and quadrupole deformations that satisfy condition (2). We use selected spaces up through $N_{\text{max}}^{\top} = 12$, which allows a comparison to available results obtained in the complete $N_{\text{max}} = 12$ space and hence, probes the efficacy of the SA-NCSM symmetry-guided model space selection concept. For this analysis, a Coulomb plus bare JISP16 NN interaction for $\hbar\Omega$ values ranging from 17.5 up to 25 MeV is used. SA-NCSM eigenstates are used to determine spectroscopic properties of low-lying T = 0 states of ⁶Li for a $\langle 6 \rangle 12$ model space and of the ground-state band of ⁶He for $\langle 8 \rangle 12$. We utilize a complete space of $N_{\text{max}}^{\perp} = 6$ for ⁶Li and of $N_{\text{max}}^{\perp} = 8$ for ⁶He, as these spaces seem sufficient to accommodate essential mixing of low-energy HO excitations.

The results indicate that the observables obtained in the symmetry-guided truncated spaces under consideration are excellent approximations to the corresponding complete-space counterparts. In particular, the ground-state binding energies repre-

Figure 4: Probabilities of the most important $(\lambda \mu)$ $(S_p S_n S)$ components in ⁶Li at $4\hbar\Omega$ subspace (a), $6\hbar\Omega$ subspace (b), $8\hbar\Omega$ subspace (c), and $10\hbar\Omega$ subspace as a function of the model space cutoff N_{max} .

Figure 5: Experimental and theoretical excitation energies: (a) T = 0 states of ⁶Li, and (b) the two lowest-lying states of the halo ⁶He nucleus. Experimental results [24] are given in the first column. The theoretical results shown are for JISP16 and $\hbar\Omega = 20$ MeV in the complete $N_{\text{max}} = 12$ space (second column), symmetryguided truncated model space (third column) and the complete $N_{\text{max}} = 6$ or 8 spaces (last column). Note the relatively large change in the calculated excitation spectrum of ⁶Li when N_{max} is increased from 6 to 12, and that the $\langle 6 \rangle 12$ SA-NCSM results (third column) track the latter closely.

sent from 98% up to 98.7% of the complete-space binding energy in the case of ⁶Li, and reach over 99% for ⁶He. Furthermore, the excitation energies differ only by 11 keV to a few hundred keV from the corresponding complete-space results, see Fig. 5, and the agreement with known experimental data is reasonable over a broad range of $\hbar\Omega$ values.

As illustrated in Table 2, the magnetic dipole moments for ⁶Li agree to within 0.3% for odd-J values, and 5% for $\mu(2_1^+)$. Qualitatively similar agreement is achieved for $\mu(2_1^+)$ of ⁶He, as shown in Table 3. The results suggest that it may suffice to include all low-lying $\hbar\Omega$ states up to a fixed limit, e. g., $N_{\max}^{\perp} = 6$ for ⁶Li and $N_{\max}^{\perp} = 8$ for ⁶He, to account for the most important correlations that contribute to the magnetic dipole moment.

To explore how close one comes to reproducing the important long-range correlations of the complete $N_{\text{max}} = 12$ space in terms of nuclear collective excitations within

Table 2: Magnetic dipole moments μ [μ_N] and point-particle rms matter radii r_m [fm] of T = 0 states of ⁶Li calculated in the complete $N_{\text{max}} = 12$ space and the $\langle 6 \rangle 12$ subspace for JISP16 and $\hbar\Omega = 20$ MeV. The experimental value for the 1⁺ ground state is known to be $\mu = +0.822 \ \mu_N$ [24].

	$1^{+}_{1}0$	$3^{+}_{1}0$	$2^{+}_{1}0$	$1^{+}_{2}0$
	μ		-	
Full $N_{\rm max} = 12$	0.838	1.866	0.960	0.336
$\langle 6 \rangle 12$	0.840	1.866	1.015	0.337
	rms			
Full $N_{\rm max} = 12$	2.146	2.092	2.257	2.373
$\langle 6 \rangle 12$	2.139	2.079	2.236	2.355

	$N_{\rm max} = 12$	$\langle 8 \rangle 12$
$B(E2; 2_1^+ \to 0_1^+) \ [e^2 \text{fm}^4]$	0.181	0.184
$Q(2_1^+) \ [e \cdot {\rm fm}^2]$	-0.690	-0.711
$\mu(2_1^+) \ [\mu_N]$	-0.873	-0.817
$r_m (2_1^+)$ [fm]	2.153	2.141
$r_m (0^+_1)$ [fm]	2.113	2.110

Table 3: Selected observables for the two lowest-lying states of ⁶He obtained in the complete $N_{\text{max}} = 12$ space and (8)12 model subspace for JISP16 and $\hbar\Omega = 20$ MeV.

the symmetry-truncated spaces under consideration, we compared observables that are sensitive to the tails of the wavefunctions; specifically, the point-particle rms matter radii, the electric quadrupole moments and the reduced electromagnetic B(E2)transition strengths that, in addition, could hint at rotational features [25]. As Table 3 clearly shows, the complete-space results for these observables are remarkably well reproduced by the SA-NCSM for ⁶He in the restricted $\langle 8 \rangle 12$ space. Similarly, the $\langle 6 \rangle 12$ eigensolutions for ⁶Li yield results for B(E2) strengths and quadrupole moments that track very closely with their complete $N_{\rm max} = 12$ space counterparts for all values of $\hbar\Omega$ (Fig. 6). The B(E2) strengths almost double upon increasing the model space from $N_{\rm max} = 6$ to $N_{\rm max} = 12$. This result suggests that further expansion of the model space will be needed to reach convergence [26]. The close correlation between the $N_{\rm max} = 12$ and $\langle 6 \rangle 12$ results is nevertheless impressive. In addition to being in agreement, the results reproduce the challenging sign and magnitude of the groundstate quadrupole moment that is measured to be $Q(1^+) = -0.0818(17) \ e \cdot \text{fm}^2$ [24].

Figure 6: Electric quadrupole transition probabilities in units of $e^2 \text{fm}^4$ [(a) and (b), as shown], and quadrupole moments in units of $e \cdot \text{fm}^2$ (c) as a function of $\hbar\Omega$ for T = 0 states of ⁶Li calculated using JISP16 in the complete $N_{\text{max}} = 12$ space (dashed black line), the complete $N_{\text{max}} = 6$ space (solid blue line), and symmetrytruncated $\langle 6 \rangle 12$ (solid red line) model spaces. Note that while the $N_{\text{max}} = 6$ results differ considerably from their $N_{\text{max}} = 12$ counterparts, in all cases the latter are nearly indistinguishable from the truncated $\langle 6 \rangle 12$ results. Experimentally, $B(E2; 1_1^+ \rightarrow 3_1^+) = 25.6(20) e^2 \text{fm}^4$ [24].

Finally, the results for the rms matter radii of ⁶Li, listed in Table 2, agree to within 1%.

The differences between truncated-space and complete-space results are found to be essentially insensitive to the choice of $\hbar\Omega$ and appear sufficiently small as to be inconsequential relative to the residual dependences on $\hbar\Omega$ and on $N_{\rm max}$ (see Fig. 6). Since the NN interaction dominates contributions from three-nucleon forces (3NFs) in light nuclei, except for selected cases [27–29], we expect our results to be robust and carry forward to planned applications that will include 3NFs.

5 Conclusion

We have developed a novel approach that capitalizes on advances being made in *ab initio* methods while exploiting exact and partial symmetries of nuclear many-body system. Using this approach we have demonstrated that the low-lying eigenstates of ⁶Li, ⁸Be, ¹²C, and ¹⁶O, which were obtained using the JISP16 and N³LO *NN* interaction, exhibit a strong dominance of few intrinsic spin components and carry an intriguingly simple pattern of dominant deformations. The results very clearly underscore the significance of the SU(3) scheme, *LS*-coupling, and underlying symplectic symmetry in enabling an extension, through symmetry-guided model space reductions, of *ab initio* methods to heavier nuclei beyond ¹⁶O.

Acknowledgments

This work was supported in part by the US NSF (OCI-0904874, OCI-0904782, PHY-0904782), the US Department of Energy (DE-SC0005248, DE-SC0008485, DE-FG02-87ER40371), and the Southeastern Universities Research Association. This research used computing resources of the Louisiana Optical Network Initiative, LSU's Center for Computation & Technology, and the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

References

- S. C. Pieper, R. B. Wiringa and J. Carlson, Phys. Rev. C 70, 054325 (2004);
 K. M. Nollett, S. C. Pieper, R. B. Wiringa, J. Carlson and G. M. Hale, Phys. Rev. Lett. 99, 022502 (2007).
- [2] P. Navrátil, J. P. Vary and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000); S. Quaglioni and P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008); Phys. Rev. C 79, 044606 (2009); B. R. Barrett, P. Navrátil and J. P. Vary, Progr. Part. Nucl. Phys. 69, 131 (2013).
- [3] G. Hagen, T. Papenbrock and M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2010).
- [4] A. M. Shirokov, A. I. Mazur, S. A. Zaytsev, J. P. Vary and T. A. Weber, Phys. Rev. C 70, 044005 (2004); A. M. Shirokov, J. P. Vary, A. I. Mazur, S. A. Zaytsev and T. A. Weber, Phys. Lett. B 621, 96(2005); A. M. Shirokov, J. P. Vary, A. I. Mazur and T. A. Weber, Phys. Lett. B 644, 33 (2007).
- [5] R. Machleidt, F. Sammarruca and Y. Song, Phys. Rev. C 53, R1483 (1996);
 R. Machleidt, Phys. Rev. C 63, 024001 (2001).
- [6] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).

- [7] P. Sternberg, E. G. Ng, C. Yang, P. Maris, J. P. Vary, M. Sosonkina and H. V. Le, in *Proc. 2008 ACM/IEEE Conf. on Supercomputing, Austin, November 2008.* IEEE Press, Piscataway, NJ, 2008, p. 15:1.
- [8] P. Maris, M. Sosonkina, J. P. Vary, E. G. Ng and C. Yang, Proc. Comput. Sci. 1, 97 (2010).
- [9] H. M. Aktulga, C. Yang, E. N. Ng, P. Maris and J. P. Vary, in *Euro-Par*, eds. C. Kaklamanis, T. S. Papatheodorou and P. G. Spirakis. Lecture Notes Comput. Sci. **7484**, 830 (2012).
- [10] P. Maris, A. M. Shirokov and J. P. Vary, Phys. Rev. C 81, 021301(R) (2010).
- [11] V. Z. Goldberg *et al.*, Phys. Lett. B **692**, 307 (2010).
- [12] B. Davids, R. H. Cyburt, J. Jose and S. Mythili, Astrophys. J. 735, 40 (2011).
- [13] A. M. Laird *et al.*, Phys. Rev. Lett. **110**, 032502 (2013).
- [14] T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr and M. A. Caprio, Phys. Rev. Lett., in press, arXiv:1312.0969 [nucl-th] (2013).
- [15] J. P. Elliott, Proc. Roy. Soc. A 245, 128 (1958); *ibid.* 245, 562 (1958); J. P. Elliott and M. Harvey, *ibid.* 272, 557 (1962).
- [16] G. Rosensteel and D. J. Rowe, Phys. Rev. Lett. **38**, 10 (1977).
- [17] J. P. Draayer, T. Dytrych, K. D. Launey and D. Langr, Progr. Part. Nucl. Phys. 67, 516 (2012).
- [18] O. Castaños, J. P. Draayer and Y. Leschber, Z. Phys. A **329**, 33 (1988); G. Rosensteel and D. J. Rowe, Ann. Phys. (NY) **104**, 134 (1977); Y. Leschber and J. P. Draayer, Phys. Lett. B **190**, 1 (1987).
- [19] J. P. Draayer, Y. Leschber, S. C. Park and R. Lopez, Comput. Phys. Comm. 56, 279 (1989).
- [20] D. R. Peterson and K.T. Hecht, Nucl. Phys. A **344**, 361 (1980).
- [21] D. J. Rowe, Rep. Progr. Phys. 48, 1419 (1985).
- [22] T. Dytrych, K. D. Sviratcheva, C. Bahri, J. P. Draayer and J. P. Vary, Phys. Rev. Lett. 98, 162503 (2007).
- [23] F. Arickx, Nucl. Phys. A **268**, 347 (1976).
- [24] D. R. Tilley et al., Nucl. Phys. A 708, 3 (2002).
- [25] M. A. Caprio, P. Maris and J. P. Vary, Phys. Lett. B 719, 179 (2013).
- [26] C. Cockrell, J. P. Vary and P. Maris, Phys. Rev. C 86, 034325 (2012).
- [27] B. R. Barrett, P. Navrátil and J. P. Vary, Progr. Part. Nucl. Phys. 69, 131 (2013).
- [28] P. Maris, J. P. Vary, P. Navrátil, W. E. Ormand, H. Nam and D. J. Dean, Phys. Rev. Lett. 106, 202502 (2011).
- [29] P. Maris, J. P. Vary and P. Navrátil, Phys. Rev. C 87, 014327 (2013).