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Abstract

Ab initio theories that build on first principles are essential for understanding
nuclear structure at a fundamental level and for providing reliable predictions
of short-lived nuclei. While the ab initio symmetry-adapted no-core shell model
(SA-NCSM) has unveiled a clear symmetry structure that emerges from first
principles — an outcome that has only recently become feasible with the advent
of high performance computing (HPC) facilities, these symmetries have been
long recognized and have been key to successful algebraic models with the cor-
nerstone approaches reviewed here. Utilizing these symmetries, we have found
that a fully microscopic no-core symplectic model reproduces characteristic fea-
tures of the low-lying 0+ states in 12C and ground-state rotational bands in p

and sd-shell nuclei (from Be to Si). Such ‘top down’ algebraic considerations
can hence inform ‘bottom up’ ab initio approaches by exposing emergent prop-
erties in terms of simple interaction forms that are likely to dominate nuclear
structure.

Keywords: Ab-initio symmetry-adapted no-core shell model; SU(3) coupling
scheme; symplectic Sp(3,R) shell model; Hoyle state

1 Introduction

The ab initio symmetry-adapted no-core shell-model (SA-NCSM), with results that
corroborate and are complementary to those enabled within the framework of the
no-core shell model1 (NCSM) [1], and which can be used to facilitate ab initio appli-
cations to challenging lower sd-shell nuclei, reveal that bound states of light nuclei
are dominated by high-deformation and low-spin configurations [2]. The applicable
symmetries reveal the nature of collectivity in such nuclei and provide a description
of bound states in terms of a relatively small fraction of the complete space when the
latter is expressed in an (LS)J coupling scheme with the spatial configurations fur-
ther organized into irreducible representations of SU(3). That SU(3) plays a key role
tracks with the seminal work of Elliott [3], and is further reinforced by the fact that
SU(3) also underpins the microscopic symplectic model [4, 5], which provides a theo-
retical framework for understanding deformation-dominated collective phenomena in
atomic nuclei [6].

1This talk is dedicated to James P. Vary on the occasion of his 70th birthday, and is given
in recognition and celebration of his important contributions to nuclear physics, especially for his
seminal and sustained leadership in the development of the no-core shell model.

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 47.

http://www.ntse-2013.khb.ru/Proc/Draayer.pdf.
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While applications to p-shell and selected heavier nuclei [2, 7–9] illustrate the
success of the ab initio approach, a very simple algebraic interaction, which reduces to
the Elliott SU(3) model [3] in the single-shell limit, augmented by the SU(3) symmetry
breaking spin-orbit interaction, reproduces characteristic features of the low-lying 0+

states in 12C as well as ground-state rotational bands in p and sd-shell nuclei (from
Be to Si) [10,11]. The study of 12C includes the elusive first excited 0+2 state, known
as the Hoyle state [12] that was predicted based on observed abundances of heavy
elements in the universe, and which has attracted much recent attention [13–16].
An implication of the latter is that efforts to reproduce the structure of 12C using a
‘bottom up’ ab initio effective interaction theory may benefit from ‘top down’ algebraic
considerations that serve to expose emergent properties in terms of simple interaction
forms that seem to dominate the structure of deformed nuclei, especially the 0+ states
of 12C.

2 Shell models and collectivity-driven models

This section is dedicated to a short review of the major theoretical efforts that un-
derpin development of the SA-NCSM and/or have advanced our understanding of
particle- and collectivity-driven phenomena (Table 1). For a complete list of ap-
proaches that have made substantial contributions, we refer the reader to the review
articles [6, 17, 18] and references therein.

In the 1950s, two simple models of nuclear structure were advanced that are
complementary in nature, namely, the independent-particle model of Mayer and
Jensen [19], and the collective model of Bohr and Mottelson [20]. The first of these,
which is microscopic in nature, recognizes that nuclei can be described by particles
independently moving in a mean field, with the harmonic oscillator (HO) potential
being a very good first approximation to the average potential experienced by each
nucleon in a nucleus. The second of these, which is collective in nature, recognizes
that deformed shapes dominate the dynamics. For example, deformed configurations
are found to be important even in a nucleus such as 16O, which is commonly treated
as spherical in its ground state, but 20% of the latter is governed by deformed shapes;
in addition, the lowest-lying excited 0+ states in 16O and their rotational bands are
dominated by large deformation [21]. Bohr and Mottelson offered a simple but im-
portant description of nuclei in terms of the deformation of the nuclear surface and
associated vibrations and rotations.

The seminal work of Elliott [3, 22] focused on the key role of SU(3), the exact
symmetry of the three-dimensional spherical HO. Within a shell-model framework,
Elliott’s model utilizes an SU(3)-coupled basis that is related via a unitary transfor-
mation to the basis used in the conventional shell model. The new feature here is that
SU(3) divides the space into basis states of definite (λµ) quantum numbers of SU(3)
linked to the intrinsic quadrupole deformation [23–25]. E. g., the simplest cases, (0 0),
(λ 0), and (0µ), describe spherical, prolate, and oblate deformation, respectively. For
SU(3)-symmetric interactions, the model can be solved analytically. But regardless
whether a simple algebraic interaction is used, such as H = HHO − χ

2Q ·Q (see, e. g.,
Fig. 1, left), or an SU(3)-symmetry breaking interaction (see, e. g., Fig. 1, right),
the results have revealed a striking feature, namely, the dominance of a few most
deformed configurations. This has been shown for sd-shell nuclei, such as 18Ne, 20Ne,
22Ne, 22Mg, 24Mg, and 28Si, that have been known to possess a clear collective rota-
tional structure in their low-lying states [22,26]. It has been also observed in heavier
nuclei, where pseudo-spin symmetry and its pseudo-SU(3) complement have been
shown to play a similar role in accounting for deformation in the upper pf and lower
sdg shells, and in particular, in strongly deformed nuclei of the rare-earth and actinide
regions [27].
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Table 1: Major cornerstone theories in the development of two classes of nuclear
structure models, starting with the Shell Model (SM) and the Collective Model (CM).

Particle Focus Shape (Collectivity) Focus

Shell Model
Goeppert-Mayer & Jensen (1950s) [19]
1963 Nobel Prize: “... for their discover-
ies concerning nuclear shell structure ...”

◦ Independent-particle model, spherical
harmonic oscillator (HO) mean field
plus l·s + l2

Collective Model
Bohr & Mottelson (1950s) [20]
1975 Nobel Prize: “... for the discovery
of the connection between collective mo-
tion and particle motion in atomic nuclei
and the development of the theory of the
structure of the atomic nucleus based on
this connection ...”

◦ Descriptions in shape variables, β & γ
(deformation, rotations, vibrations)

Nilsson Model (1955) [28]
◦ Independent-particle model with a de-
formed HO mean field plus l·s + l2

Pairing Model
Algebraic pairing: Racah (1940s), Flow-
ers (1950s), Kerman (1960s) [29–31]
◦ SU(2) for like particles (pp and nn
pairs) and Sp(2) for pp, pn, nn pairs
Exact pairing:
◦ Exact solutions to standard pairing in
spherical/deformed mean field (Fig. 2,
Guan & Pan (2012) [32])

◦ Complementary developments: Ab ini-

tio Density Functional Theory (DFT) — first-

principle informed, self-consistent mean-field

theory plus correlation effects, UNEDF Sci-

DAC Collaboration (2005–Present) [33]

Elliott SU(3)* Model (1958) [3]
*SU(3) is the symmetry of the 3-D HO

Discovery of dominance of a few most
deformed configurations (Fig. 1)
◦ Shell model in SU(3)-adapted basis
◦ Valence shell
◦ SU(3)-conserving interactions
◦ SU(3)-breaking interactions: effective,
surface-delta (SDI), l · s + l2, pairing
(Fig. 3a, Vargas & Hirsch (2001) [36])

◦ Complementary developments: Geo-

metric Collective Model — with interactions in

terms of β & cos 3γ, Greiner (1969) [34] and In-

teracting Boson Model — algebraic, pairs ap-

proximated by bosons, Iachello (1975) [35]

Ab initio No-core Shell Model
Vary, Navrátil, Barrett, Maris, ...
(2000–Present) [1, 46]
First-principle descriptions (A ≤ 16)
◦ No-core shell model
◦ Realistic interactions (local/nonlocal;
NN , NNN , ...)
◦ “Horizontal” cutoff

◦ Complementary developments: (2000–

Present) GFMC [43], CC method [44], Lattice-

EFT [14] (for details, see [45])

Symplectic Sp(3,R)* Model
Rowe & Rosensteel (1980s) [4]
*Sp(3,R) is naturally realized in nuclei (see

first-principle findings, Fig. 4 & [2])

Successful reproduction of rotational
bands & transition rates without effec-
tive charges (Fig. 3b [39] and Section 4)
◦ Shell model in Sp(3,R)-adapted basis
(fixed-core & no-core, NCSpM)
◦ Schematic and effective interactions,
long-range central force
◦ “Vertical” cutoff (by symplectic slices)

Symmetry-Adapted NCSM (SA-NCSM)
Dytrych, Draayer, Launey, Maris, Vary, ... (2007–Present) [2]

Discovery of emergence of symmetries from first principles (see, e. g., Fig. 4);
expanding the reach of ab initio models to lower sd-shell nuclei
◦ Ab initio NCSM with SU(3)-adapted basis (any interaction)

◦ Manage spurious center-of-mass motion
◦ Fully microscopic & equals NCSM if the complete space is included

◦ No effective charges
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Figure 1: Elliott’s SU(3) model applied to sd-shell nuclei. Left panel: Spectrum of 22Ne (or 22Mg) (a) with a Majorana potential, (b) with the addition
of the second-order SU(3) Casimir invariant, Csu3

2 , and (c) with the Majorana potential plus an attractive Q ·Q interaction [or (b) with the addition
of L2]. Figure taken from [26]. Right panel: Spectrum of 24Mg with a Gaussian central force. Figure taken from [22]. The vertical axis in both
figures represents energy in MeV. Note the importance of the most deformed SU(3) configuration (8 2) in 22Ne and (8 4) in 24Mg for reproducing the
experimental low-lying states.
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Figure 2: Pairing gaps in MeV as calculated by the exact pairing theory (“HS pairing”)
and using the BCS approach (“BCS pairing”), and compared to experiment for Ni
isotopes, 58Ni to 77Ni, using four j shells, f5/2, p1/2, p3/2, g9/2 and G = 23/A MeV.
Figure taken from [32].

With an expanding body of experimental evidence that exposed prominent sys-
tematic features of nuclei, such as pairing gaps in energy spectra and enhanced elec-
tric quadrupole transitions within collective rotational bands, deformation modes
were added to the independent-particle model to yield the Nilsson Model (deformed
HO mean field) [28]; pairing correlations were taken into account in various alge-
braic [29–31] and exact pairing models (e. g., see Fig. 2). For the latter, the pairing
Hamiltonian includes non-degenerate single-particle energies plus standard pairing
and is exactly solvable, for example, yielding solutions for the ground states of Ca,
Ni, and Sn isotopes reproducing experimentally observed pairing gaps [32].

As noted in Table 1, a more complete Density Functional Theory (DFT) is a
modern derivative theory of this general type, a self-consistent mean-field theory,
that can incorporate correlation effects and can accommodate realistic interactions
to achieve better predictive capabilities across most of the Chart of the Nuclides.
For example, outcomes using this approach generally yield an excellent accounting of
binding energies as well as near ground state phenomena across much of the nuclear
landscape [33].

Also noted in the Table 1 on the “Shape Focus” side, are two other complementary
models that served to inform us of the importance of deformation and pairing; namely,
the Geometric Collective Model (GCM) [34] advanced by Greiner and collaborators,
and the intriguing Interacting Boson Model (IBM) of Iachello and associates [35].
The latter has offered a bosonic realization of these phenomena in terms of a common
overarching U(6) algebraic structure and its physical subgroups, U(5) for pairing
modes, SU(3)⊃SO(3) for rotations and O(6)⊃SO(3) for triaxial systems.

The pairing interaction has been microscopically incorporated into the Elliott
Model where it breaks the SU(3) symmetry and mixes different (λµ) configurations.
It has been shown in Ref. [36] (see also Fig. 3a adapted from [36]) that using an
SU(3)-symmetric interaction-plus-pairing yields results close to experiment and to
the energies obtained using full sd-shell-model calculations [37]. It is remarkable
that, even in the presence of pairing, comparable results have been obtained in a
truncated model space that includes only about 10 most deformed configurations.
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(a) (b)

Figure 3: (a) Elliott’s model with a SU(3)-preserving interaction + pairing in the sd
valence shell for 22Ne. Figure adapted from [36]. (b) Microscopic symplectic model
with a set of effective single-particle energies, a Q·Q-type interaction+pairing for 20Ne
[calculated B(E2 ↓) transition strengths, not shown in the figure, for Jπ = 2+, 4+,
6+, and 8+ without effective charges fall within the uncertainties of the corresponding
experimental measurements]. Figure taken from [39].

Another very significant advance is the microscopic symplectic model [4, 5], de-
veloped by Rowe and Rosensteel, which provides a theoretical framework for under-
standing deformation-dominated collective phenomena in atomic nuclei [6] that in-
volves particle-particle as well as particle-hole excitations across multiple shells. The
significance of the symplectic Sp(3,R) symmetry, the embedding symmetry of SU(3)
[Sp(3,R)⊃SU(3)], for a microscopic description of a quantum many-body system of
interacting particles naturally emerges from the physical relevance of its 21 generators,
which are directly related to the particle momentum (psα) and coordinate (rsα) op-
erators, with α = x, y, and z for the 3 spatial directions and s labeling an individual
nucleon, and realize important observables. Namely, the many-particle kinetic en-
ergy

∑

s,α p2sα/2m, the HO potential,
∑

s,α mΩ2r2sα/2, the mass quadrupole moment

Q(2M) =
∑

s q(2M)s =
∑

s

√

16π/5 r2s Y(2M)(r̂s) and angular momentum L operators,
together with multi-shell collective vibrations and vorticity degrees of freedom for a
description from irrotational to rigid rotor flows are all part of this symmetry. Indeed,
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the symplectic Sp(3,R) symmetry underpins the symplectic shell model that provides
a microscopic formulation of the Bohr–Mottelson collective model and is a multiple
oscillator shell generalization of the successful Elliott SU(3) model. The symplectic
model with Sp(3,R)-preserving interactions2 have achieved a remarkable reproduc-
tion of rotational bands and transition rates without the need for introducing effective
charges, while only a single Sp(3,R) configuration is used [6,38]. A shell-model study
in a symplectic basis that allows for mixing of Sp(3,R) configurations due to pairing
and non-degenerate single-particle energies above a 16O core [39] has found that using
only seven Sp(3,R) configurations is sufficient to achieve a remarkable reproduction of
the 20Ne energy spectrum (Fig. 3b) as well as of E2 transition rates without effective
charges.

I believe one can safely claim that the summit of the particle-hole, shell model
climb, with James Vary leading the pack, has been realized with the development of
the no-core shell model (NCSM), which, in principle, can straightforwardly accom-
modate any type of inter-nucleon interaction. Specifically, for a general problem, the
NCSM adopts the intrinsic non-relativistic nuclear plus Coulomb interaction Hamil-
tonian defined as follows:

H = Trel + VNN + VNNN + . . . + VCoulomb, (1)

where the VNN nucleon-nucleon and VNNN 3-nucleon interactions are included along
with the Coulomb interaction between the protons. The Hamiltonian may include
additional terms such as multi-nucleon interactions among more than three nucleons
simultaneously and higher-order electromagnetic interactions such as magnetic dipole-
dipole terms. It adopts the HO single-particle basis characterized by the ~Ω oscillator
strength and retains many-body basis states of a fixed parity, consistent with the Pauli
principle, and limited by a many-body basis cutoff Nmax. The Nmax cutoff is defined
as the maximum number of HO quanta allowed in a many-body basis state above
the minimum for a given nucleus. It divides the space in “horizontal” HO shells
and is dictated by particle-hole excitations (this is complementary to the microscopic
symplectic model, which divides the space in vertical slices selected by collectivity-
driven rules). It seeks to obtain the lowest few eigenvalues and eigenfunctions of
the Hamiltonian (1). The NCSM has achieved remarkable descriptions of low-lying
states from the lightest s-shell nuclei up through 12C, 16O, and 14F, and is further
augmented by several techniques, such as NCSM/RGM [40], Importance Truncation
NCSM [41] and Monte Carlo NCSM [42]. This supports and complements results
of other first-principle approaches, also shown in Table 1, such as Green’s function
Monte Carlo (GFMC) [43], Coupled-cluster (CC) method [44], and Lattice Effective
Field Theory (EFT) [14] (see also, this proceedings volume [45]). For further details
on NCSM, see Vary’s distinguished lecture in this proceedings [46].

We have recently explored a fully microscopic no-core symplectic shell model,
NCSpM (for details, see Sec. 4) that utilizes a Sp(3,R)-preserving Q · Q-type inter-
action plus a symmetry-breaking l ·s interaction. The study has revealed that with
a simple interaction and only a few Sp(3,R) configurations the model can provide a
successful description of the 12C Hoyle state and low-lying states in nuclei from Be to
Si [10, 11] (including energy spectra, E2 transition strengths, quadrupole moments,
and matter rms radii). The key to this outcome is the ability of the model to include
higher-lying HO shells, thereby making large-Nmax calculations feasible.

The next-generation ab initio symmetry-adapted no-core shell model (SA-NCSM)
[2] combines the first-principle concept of the NCSM with symmetry-guided consid-
erations of the collectivity-driven models. The SA-NCSM has revealed the emergence

2An important Sp(3,R)-preserving interaction is 1

2
Q ·Q = 1

2

∑
s
qs · (

∑
t
qt), as this realizes the

physically relevant interaction of each particle with the total quadrupole moment of the nuclear
system.
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of clear symmetry patterns from first principles [2] — such as the SU(3) and the sym-
plectic Sp(3,R) symmetries inherent to nuclei, and in addition, have demonstrated
the power of using symmetry-dictated subspaces to reach new domains of nuclear
structure currently inaccessible by ab initio calculations. The model and its recent
findings are described in the next section.

3 Ab initio SA-NCSM

The ab initio symmetry-adapted no-core shell model (SA-NCSM) [2] adopts the first-
principle concept and utilizes a many-particle basis that is reduced with respect to the
physically relevant SU(3)⊃SO(3) subgroup chain (for a review, see [21]). This allows
the full model space to be down-selected to the physically relevant space. The signifi-
cance of the SU(3) group for a microscopic description of the nuclear collective dynam-
ics can be seen from the fact that it is the symmetry group of the Elliott model [3], and
a subgroup of the Sp(3,R) symplectic model [4]. The basis states of the SA-NCSM
are based on HO single-particle states and for a given Nmax, are constructed in the
proton-neutron formalism using an efficient construction based on powerful group-
theoretical methods. The SA-NCSM basis states are related to the NCSM basis
states through a unitary transformation (hence, the SA-NCSM results obtained in a
complete Nmax space are equivalent to the Nmax-NCSM results). They are labeled by
the SU(3)⊃SO(3) subgroup chain quantum numbers (λµ)κL, together with proton,
neutron, and total intrinsic spins Sp, Sn, and S. The orbital angular momentum L is
coupled with S to the total orbital momentum J and its projection MJ . Each basis
state in this scheme is labeled schematically as |~γ (λµ)κL; (SpSn)S; JMJ〉. The la-
bel κ distinguishes multiple occurrences of the same L value in the parent irrep (λµ),
and ~γ distinguishes among configurations carrying the same (λµ) and (SpSn)S labels.

3.1 Emergence of a simple structure —

‘Bottom Up’ considerations

The ab initio SA-NCSM results for p-shell nuclei reveal a dominance of configurations
of large deformation (typically large |λ − µ|) in the 0~Ω subspace. For example,
the ab initio Nmax = 6 SA-NCSM results with the bare JISP16 realistic interac-
tion [47] for the 0+ ground state (g. st.), first 2+ and first 4+ states of 12C reveal
the dominance of the 0~Ω component with the foremost contribution coming from
the leading (0 4) S = 0 irrep (Fig. 4). Furthermore, we find that important SU(3)
configurations are then organized into structures with Sp(3,R) symplectic symme-
try, that is, the (0 4) symplectic irrep gives rise to (0 2) and (2 4) configurations in
the 2~Ω subspace and so on (see Fig. 4, inset), and those configurations indeed realize
the major components of the wavefunction in this subspace. This further confirms
the significance of the symplectic symmetry to nuclear dynamics. Similar results are
observed for other p-shell nuclei. The outcome points to the fact that the relevant
model space can be systematically determined by down-selecting to important spin
configurations in lower subspaces while expanded to include a limited set of strongly
deformed configurations in the higher Nmax regime.

In short, the SA-NCSM advances an extensible microscopic framework for studying
nuclear structure and reactions that capitalizes on advances being made in ab initio
methods while exploiting symmetries — exact and partial, known to dominate the
dynamics.
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Figure 4: Probability distribution of the lowest calculated 0+ state for 12C over
deformed subspaces labeled by (λµ) for six of the most important spin components
{Sp, Sn, S} = {0, 0, 0}, {1, 0, 1}, {0, 1, 1}, {1, 1, 1}, {1, 1, 0} and {1, 1, 2}. Labels above
the columns denote SU(3) quantum numbers of states that belong to the leading
(0 4) symplectic Sp(3,R) irrep. The wavefunction was obtained using the Nmax = 6
SA-NCSM with the JISP16 bare interaction and ~Ω = 10 MeV.
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3.2 Symmetries in realistic nucleon-nucleon interactions

The nucleon-nucleon interaction itself possesses a clear structure when its SU(3)
content is studied. This is observed in the decomposition of the NN interaction
into SU(3) × SU(2)S × SU(2)T tensors (isoscalar interactions will be henceforth con-
sidered). This is analogous to the unitary transformation of a V2b two-body interac-
tion represented in a m-scheme harmonic oscillator (HO) basis to a JT -coupled basis,
which renders V2b as only one SU(2)J × SU(2)T tensor of rank J0 = 0 and T0 = 0 (a
scalar with respect to rotations in coordinate and isospin space). For example, the
scalar interaction part of (λ0 µ0) = (0 0) does not mix nuclear deformation in analogy
to the isoscalar part of an interaction that does not mix isospin values. In addition,
the (λ0 µ0) interaction parts with λ0 = µ0 are almost diagonal, that is, connect con-
figurations within a few shells, while interaction parts with a large difference |λ0−µ0|
typically couple low-lying and higher-lying shell-model configurations.

This decomposition organizes the interaction into only a small number of pieces
of information that bring forward important physics. In particular, as a measure of
the strength or “size” of each interaction tensor, we use its Hilbert–Schmidt norm,
which is directly related to the square of the (λ0 µ0)S0 reduced matrix elements. For
example, we find a dominance of the (0 0) scalar part followed by the symplectic-like
modes of (0 2), and equally, the conjugate (2 0), and then tensors as (1 1), (2 2), (3 3),
and etc., which typically dominate for the pairing interaction or contact term (see
Fig. 5 for the bare JISP16, which is used for Nmax = 6 SA-NCSM calculations in
Fig. 4). These results, we find, repeat for various realistic bare and renormalized
interactions.

4 NCSpM model — ‘Top Down’ considerations

The no-core symplectic shell model (NCSpM) is a fully microscopic no-core shell
model that uses a symplectic Sp(3,R) basis and Sp(3,R)-preserving interactions. The
NCSpM employed within a full model space up through a given Nmax coincides with
the NCSM for the same Nmax cutoff. However, in the case of the NCSpM, the
symplectic irreps divide the space into ‘vertical slices’ that are comprised of basis
states of a definite deformation (λµ). Hence, the model space can be reduced to only a
few important configurations that are chosen among all possible Sp(3,R) irreps within
the Nmax model space. The NCSpM, while selecting the most relevant symplectic
configurations, is employed to provide shell model calculations beyond current NCSM
limits, namely, up through Nmax = 20 for 12C, the model spaces we found sufficient
for the convergence of results [10].

We employ a very simple Hamiltonian with an effective interaction derived from
the long-range expansion of the two-body central nuclear force together with a spin-
orbit term,

Heff = H0 +
χ

2

(

e−γQ·Q − 1
)

γ
− κ

A
∑

i=1

li ·si. (2)

This includes the spherical HO potential, which together with the kinetic energy

yields the HO Hamiltonian, H0 =
∑A

i=1

(

p
2

i

2m +
mΩ2

r
2

i

2

)

, and the Q ·Q quadrupole-

quadrupole interaction not restricted to a single shell. For the latter term, the average
contribution, 〈Q ·Q〉n, of Q ·Q within a subspace of n HO excitations is removed [48],
that is, the trace of Q ·Q divided by the space dimension for a fixed n. Hence, the
large monopole contribution of the Q·Q interaction is removed, which, in turn, helps
eliminate the considerable renormalization of the zero-point energy, while retaining
the Q·Q-driven behavior of the wavefunctions. This Hamiltonian in its zeroth-order
approximation (for parameter γ → 0) and for a valence shell goes back to the estab-
lished Elliott model. We take the coupling constant χ to be proportional to ~Ω and,
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Figure 5: Relative strengths of the T = 1 (left) and T = 0 (right) bare JISP16
interaction tensors labeled by (λ0 µ0)S0 for ~Ω = 15 MeV and Nmax = 6 for p-shell
nuclei.

to leading order, to decrease with the total number of HO excitations, as shown by
Rowe [49] based on self-consistent arguments.

As the interaction and the model space are carefully selected to reflect the most
relevant physics, the outcome reveals a quite remarkable agreement with the ex-
periment [10]. The low-lying energy spectrum and eigenstates for 12C were calcu-
lated using the NCSpM with H of Eq. (2) for ~Ω = 18 MeV given by the em-
pirical estimate ≈ 41/A1/3 = 17.9 MeV and for κ ≈ 20/A2/3 = 3.8 MeV (see,
e. g., [20]). The results are shown for Nmax = 20, which we found sufficient to yield
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Figure 6: Energy spectra calculated by the NCSpM with γ = −1.71×10−4 for (a) 8Be
in an Nmax = 24 model space, (b) 12C in an Nmax = 20 model space, (c) 22Ne and
(d) 22Mg in an Nmax = 12 model space, and compared to experiment (“Expt.”).

convergence. This Nmax model space is further reduced by selecting the most rele-
vant symplectic irreps, namely, the spin-zero (S = 0) 0~Ω 0p-0h (0 4), 2~Ω 2p-2h (6 2),
and 4~Ω 4p-4h (12 0) symplectic bandheads together with the S = 1 0~Ω 0p-0h (1 2)
and all multiples thereof up through Nmax = 20 of total dimensionality of 6.6 × 103.
In comparison to the experimental energy spectrum (Fig. 6b), the outcome reveals
that the lowest 0+, 2+, and 4+ states of the 0p-0h symplectic slices calculated
for γ = −1.71 × 10−4 closely reproduce the g. st. rotational band, while the cal-
culated lowest 0+ states of the 4~Ω 4p-4h (12 0) and the 2~Ω 2p-2h (6 2) slices are
found to lie close to the Hoyle state and the 10-MeV 0+ resonance (third 0+ state),
respectively. The model successfully reproduces other observables for 12C that are in-
formative of the state structure, such as mass rms radii, electric quadrupole moments
and B(E2) transition strengths (Fig. 6b).

A preponderance of the (0 4) S = 0 configuration and also (1 2) S = 1 configu-
ration is observed for the ground-state rotational band, thereby indicating an oblate
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shape. The Hoyle-state rotational band includes shapes of even larger deformations
but prolate, with the largest contribution of (16 0).

While the model includes an adjustable parameter, γ, this parameter only controls
the decrease rate of the Q ·Q interaction with increasing n. The entire many-body
apparatus is fully microscopic and no adjustments are possible. Hence, as γ varies,
there is only a small window of possible γ values that, for large enough Nmax, closely
reproduces the relative positions of the three lowest 0+ states.

The outcome of the present analysis is not limited to 12C. The model we find is
also applicable to the low-lying states of other p-shell nuclei, such as 8Be, as well as
sd-shell nuclei without any adjustable parameters (Fig. 6). In particular, using the
same γ = −1.71 × 10−4 as determined here for 12C, we describe selected low-lying
states in 8Be in an Nmax = 24 model space with only 3 spin-zero 0~Ω (4 0), 2~Ω (6 0),
and 4~Ω (8 0) symplectic irreps. Furthermore, we have successfully applied the
NCSpM without any adjustable parameters to the ground-state rotational band of
heavier nuclei, such as 20Ne, 22,24Ne, 22,26Mg, and 24,26Si (see Fig. 6 for 22Ne and
22Mg). This suggests that the fully microscopic NCSpM model has indeed captured
an important part of the physics that governs the low-energy nuclear dynamics.

5 Conclusion

Symmetries in atomic nuclei that have been long recognized have been recently utilized
and further understood in the framework of the ab initio symmetry-adapted no-core
shell model SA-NCSM as well as of the microscopic no-core symplectic model NCSpM
that combine the shell-model and collectivity-driven concepts. The findings pointed to
a remarkable new insight, namely, understanding the mechanism on how such simple
structures emerge from a fundamental level.

Symmetry-adapted, no-core shell-model calculations with SU(3) the underpinning
symmetry were presented. We showed that employing symmetry considerations is
effective in providing an efficient description of low-lying states. This holds promise to
significantly enhance the reach of ab initio shell models toward heavier nuclear systems
as well as to achieve descriptions of collective and cluster phenomena from underlying
quark/gluon considerations. In addition, the NCSpM study with a schematic many-
nucleon interaction showed how both collective and cluster-like structures emerge out
of a no-core shell-model framework, which extended to and took into account essential
high-lying shell-model configurations.
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