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Abstract

We continue our studies of infrared (ir) and ultraviolet (uv) regulators of
no-core shell model calculations. We extend our results that an extrapolation
in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction
is quite successful, not only for the eigenstates of the Hamiltonian but also for
expectation values of operators considered long range. The latter results are ob-
tained with Hamiltonians transformed by the similarity renormalization group
(SRG) evolution. On the other hand, a suggested extrapolation in the uv cutoff
when the ir cutoff is below the intrinsic ir scale is neither robust nor reliable.

Keywords: No-core shell model; convergence of expansion in harmonic oscil-

lator functions; ultraviolet regulator; infrared regulator

1 Introduction

Variational calculations based upon a harmonic oscillator (HO) basis expansion have
a long history in nuclear structure physics. If one views a shell-model calculation as
a variational calculation, expanding the configuration space merely serves to improve
the trial wave function [1]. A parallel program uses the HO eigenfunctions as a basis
of a finite linear expansion to make a straightforward variational calculation of the
properties of light nuclei [2]. Theorems based upon functional analysis established
the asymptotic convergence rate of these calculations as a function of the counting
number (N ) which characterizes the size of the expansion basis (or model space) [3,4].
The convergence rates of these theorems (inverse power laws in N for “non smooth”
potentials such as Yukawa’s with strong short range correlations and exponential in N
for “smooth” potentials such as gaussians) were demonstrated numerically in Ref. [3]
for the HO expansion and in Ref. [5] for the analogous expansion in hyperspherical
harmonics. These convergence theorems are used to extrapolate to the “infinite” basis
in few-body studies [6] and in “ab initio” “no-core shell model” (NCSM) calculations
of s- and p-shell nuclei [7]. However, the HO expansion basis has an intrinsic scale
parameter ~ω which does not naturally fit into an extrapolation scheme based upon N
as discussed in Refs. [3,4,8]. Indeed the model spaces of these NCSM approaches are
characterized by the ordered pair (N , ~ω). Here the basis truncation parameter N
and the HO energy parameter ~ω are variational parameters [7, 9, 10]. With the HO
basis in the nuclear structure problem, convergence has been discussed, in practice,
with an emphasis on obtaining those parameters which appear linearly in the trial
function (i. e. convergence with N ). In an early example, ~ω is simply fixed at a
value which gives the fastest convergence in N [6]. Later, for each N the non-linear
parameter ~ω is varied to obtain the minimal energy [9, 11] for a fixed N and then
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the convergence with N is examined at that fixed value of ~ω. Other extrapolation
schemes have been proposed and used [10, 12].

It is the purpose of this contribution to continue an investigation of the extrapola-
tion tools introduced in Ref. [13] which use N and ~ω on an equal footing. These tools
are based upon the pair of ultraviolet (uv) and infrared (ir) cutoffs (each a function
of both N and ~ω) of the model space. These regulators were first introduced to the
NCSM by Ref. [14] in the context of an effective field theory (EFT) approach. For a
recent review of this program see Ref. [15].

The early ab initio calculations, both of the “no-core” shell model in which all
nucleons are active [1] and of the Moshinsky program attempted to overcome the
challenges posed by “non-smooth” two-body potentials by including Jastrow type
two-body correlations in the trial wave function. Nowadays, the NN potentials are
tamed by unitary transformations within the model space [16] or in free space by
either the similarity renormalization group (SRG) evolution [17] or the Vlow k trun-
cation [18, 19]. In all three cases, this procedure generates effective many-body in-
teractions in the new Hamiltonian. Neglecting these destroys the variational aspect
of the calculation (and changes the physics contained in the calculation, of course).
We retain the variational nature of our NCSM investigation by choosing a realistic
smooth nucleon-nucleon (NN) interaction Idaho N3LO [20] which has been used pre-
viously without renormalization within the model space for light nuclei (A ≤ 6) [9].
The Idaho N3LO potential is a rather soft one, with heavily reduced high-momentum
components (“super-Gaussian falloff in momentum space”) as compared to earlier
realistic NN potentials with a strongly repulsive core. Alternatively, in coordinate
space, the contact interaction and the Yukawa singularity at the origin are regulated
away so that this potential would be considered “smooth” by Delves and Schneider
and the convergence in N would be expected to be exponential [3, 4]. Even without
the construction of an effective interaction, convergence with the Idaho N3LO NN
potential is exponential in N , as numerous studies have shown [9, 17].

We refer the reader to a comprehensive review article [7] on the no-core shell model
(NCSM) for details and references to the literature. Inspired by EFT, one uses a trun-
cation parameter N which refers, not to the many-body system, but to the properties
of the HO single-particle states. The many-body truncation parameter Nmax is the
maximum number of oscillator quanta shared by all nucleons above the lowest HO
configuration for the chosen nucleus. One unit of oscillator quanta is one unit of the
quantity (2n+ l) where n is the principle quantum number and l is the angular quan-
tum number. If the highest HO single-particle state of this lowest HO configuration
has N0 HO quanta, then Nmax + N0 = N identifies the highest HO single-particle
states that can be occupied within this many-body basis. Since Nmax is the maximum
of the total HO quanta above the minimal HO configuration, we can have at most one
nucleon in such a highest HO single-particle state with N quanta. Note that Nmax

characterizes the many-body basis space, whereas N is a label of the corresponding
single particle space. Let us illustrate this distinction with two examples. 6He is an
open shell nucleus with N0 = 1 since the valence neutron occupies the 0p shell in the
lowest many-body configuration. Thus if Nmax = 4 the single particle truncation N
is 5. On the other hand, the highest occupied orbital of the closed shell nucleus 4He
has N0 = 0 so that N = Nmax.

2 Ultraviolet and infrared cutoffs inherent

to the finite HO basis

We begin by thinking of the finite single-particle basis space defined by N and ~ω
as a model space characterized by two momenta associated with the basis functions
themselves. We follow Ref. [14] and define Λ =

√

mN (N + 3/2)~ω as the momentum
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(in units of MeV/c) associated with the energy of the highest HO level. The nu-
cleon mass is mN = 938.92 MeV. To arrive at this definition one applies the virial
theorem to this highest HO level to establish kinetic energy as one half the total
energy [i. e., (N + 3/2)~ω] and solves the non-relativistic dispersion relation for Λ.
Thus, the usual definition of an ultraviolet cutoff Λ in the continuum has been ex-
tended to discrete HO states. It is then quite natural to interpret the behavior of
the variational energy of the system with addition of more basis states as the be-
havior of this observable with the variation of the ultraviolet cutoff Λ. Because the
energy levels of a particle in a HO potential are quantized in units of ~ω, the mo-
mentum difference between single-particle orbitals is λ =

√
mN~ω and that has been

taken to be an infrared cutoff [14]. That is, there is a low-momentum cutoff λ = ~/b

where b =
√

~

mNω plays the role of a characteristic length of the HO potential and ba-

sis functions. Note however that there is no external confining HO potential in place.
Instead the only ~ω dependence is due to the scale parameter of the underlying HO
basis. In Ref. [14] the influence of the infrared cutoff is removed by extrapolating
to the continuum limit, where ~ω → 0 with N → ∞ so that Λ is fixed. Clearly,
one cannot achieve both the ultraviolet limit and the infrared limit by taking ~ω to
zero in a fixed-Nmodel space as this procedure takes the ultraviolet cutoff to zero.
Other studies define the ir cutoff as the infrared momentum which corresponds to the
maximal radial extent needed to encompass the many-body system we are attempting
to describe by the finite basis space (or model space). These studies find it natural
to define the ir cutoff by λsc =

√

(mN~ω)/(N + 3/2) [17, 21]. Note that λsc is the
inverse of the root-mean-square (rms) radius of the highest single-particle state in the
basis; 〈r2〉1/2 = b

√

N + 3/2. We distinguish the two definitions by denoting the first
(historically) definition by λ and the second definition by λsc because of its scaling
properties demonstrated in the next Section.

3 Running of variational energies with cutoffs and

establishment of intrinsic regulator scales

We display in the next two figures the running of the ground-state eigenvalue of
the nucleus, 2H, on the truncated HO basis by holding one cutoff of (Λ, λir) fixed
and letting the other vary. In Fig. 1 and the following figures, |∆E/E| is defined
as |(E(Λ, λir)− E)/E| where E reflects a consensus ground-state energy from bench-
mark calculations with this NN potential, this nucleus, and different few-body meth-
ods.

In Fig. 1 we hold fixed the uv cutoff of (Λ, λir) to display the running of |∆E/E|
upon the suggested ir cutoff λsc. For fixed λsc, a larger Λ implies a smaller |∆E/E|
since more of the uv region is included in the calculation. But we immediately see a
qualitative change in the curves between the transition Λ=700MeV and Λ=900MeV;
for smaller Λ, |∆E/E| does not go to zero as the ir cutoff is lowered and more of the
infrared region is included in the calculation. This behavior suggests that |∆E/E|
does not go to zero unless Λ ≥ ΛNN , where ΛNN is some uv regulator scale of
the NN interaction itself. From this figure one estimates ΛNN ∼ 900 MeV/c for
the Idaho N3LO interaction. For Λ < ΛNN there will be missing contributions so
“plateaus” develop as λir → 0, revealing this missing contribution to |∆E/E|. The
“plateaus” that we do see are not flat as λir → 0 and, indeed, rise significantly with
decreasing Λ < ΛNN . This suggests that corrections are needed to Λ and λir which
are presently defined only to leading order in λir/Λ.

Around Λ ∼ 700 MeV/c and above the plot of |∆E/E| versus λsc in Fig. 1 begins
to suggest a universal pattern, especially at large λsc. For Λ ∼ 900 MeV/c and
above the pattern defines a universal curve for all values of λsc. This is the region
where Λ ≥ ΛNN indicating that nearly all of the ultraviolet physics set by the potential
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Figure 1: Dependence of the ground-state energy of 2H (compared to a converged
value; see text) upon the ir momentum cutoff λsc =

√

(mN~ω)/(N + 3/2) for

fixed Λ =
√

mN (N + 3/2)~ω.

has been captured. The universal curve can be fit by the |∆E/E| = a exp(−b/λsc)
which suggests immediately that λsc could be used for extrapolation to the ir limit,
provided that Λ is kept large enough to capture the uv region of the calculation,
i. e. Λ ≥ ΛNN . Figure 1 is also the motivation for our appellation λsc, which we read
as “lambda scaling”, since this figure exhibits the attractive scaling properties of this
regulator.

The originally suggested ir cutoff λ =
√
mN~ω, corresponding to the non-zero

energy spacing between HO levels, gives not a universal curve for Λ ≥ ΛNN but
instead a set of curves fit by |∆E/E| = a exp(−B(Λ)/λ) (see Fig. 3 of Ref. [13]).
That is, B is not a constant and independent of the uv cutoff Λ, as it should be
in an EFT framework. One can remove the dependence of B upon Λ to a large

extent by noting that λ =
√
Λλsc so that exp(−B/λ) becomes exp

(

−B/
√

Λ
√

λsc

)

and this

multiplier of 1/
√
λsc is constant to within a few per cent. This trivial manipulation

demonstrates that the ir regulator which is independent of the uv cutoff is a function
of λsc. The point is not that the ir regulator λ cannot be used to remove ir effects
by extrapolating it to zero; indeed it works equally well to remove ir artifacts from a
calculation as does λsc [13]. Indeed, any momentum cutoff λsc ≤ λir ≤ Λ will remove
ir artifacts, but the ir regulator which is independent of the uv cutoff is some function
of λsc. It is λsc which causes the ir effects and one does not need to decrease an ir
cutoff below that of λsc to remove ir effects (i. e. extrapolate to zero).

In Fig. 2 we hold fixed the ir cutoff of (Λ, λir) to display the running of |∆E/E|
upon the cutoff Λ. Again plateaus are evident. Such a plateau-like behavior was
attributed in Fig. 1 to a uv regulator scale characteristic of the NN interaction.
Another “missing contributions” argument leads to a universal behavior at low Λ
only if λsc ≤ λNN

sc where λNN
sc is a second characteristic ir regulator scale implicit in

the NN interaction itself. One can envisage such an ir cutoff as related to the lowest
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Figure 2: Dependence of the ground-state energy of 2H (compared to a converged
value; see text) upon the uv momentum cutoff Λ for different values of the ir momen-
tum cutoff λsc.

energy configuration that the NN potential could be expected to describe. This
would be in the range of the deuteron binding momentum Q = 45 MeV/c down to
about 16 MeV/c which is the average of the four inverse scattering lengths. However
the behavior of the running as Λ ≥ ΛNN again suggests that corrections are needed
to Λ and λir which are presently defined only to leading order in λir/Λ.

Can one make an estimate of the uv and ir regulator scales of the NN interac-
tions used in nuclear structure calculations? It is easy with the JISP16 potential [22].
The S wave parts of JISP16 potential are fit to data in a HO space of N = 8
and ~ω = 40 MeV. Nucleon-nucleon interactions are defined in the relative coor-

dinates of the two-body system so one should calculate ΛNN =
√

m(N + 3/2)~ω
with the reduced mass m rather than the nucleon mass mN appropriate for the
single-particle states of the model space. Taking this factor into account, one

finds ΛJISP16 ∼ 600 MeV/c and λJISP16
sc ∼ 63 MeV/c. In practice, the uv region

seems already captured at Λ > 500−550 MeV/c [13]. The Idaho N3LO interaction
was fit to data with a high-momentum cutoff of the “super-Gaussian” regulator set
at ΛN3LO = 500 MeV/c [20]. What is the uv regulator scale of the Idaho N3LO inter-
action appropriate to the discrete HO basis of this study? A published emulation of
this interaction in a harmonic oscillator basis uses ~ω = 30 MeV andNmax ≈ 2n = 40.
A more systematic study of emulations gave a few more sets of (N, ~ω) which de-
scribed 3He ground state energy equally well [23]. The successful emulation of the
Idaho N3LO interaction in a HO basis suggests that ΛN3LO ∼ 900−1100 MeV/c
and λN3LO

sc ∼ 21−42 MeV/c, consistent with Figs. 2 and 3. In practice from calcula-
tions of a variety of light nuclei the uv region seems already captured
at Λ > 800 MeV/c [13].
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4 Extrapolations

The extrapolation scheme proposed in [13] gives N and ~ω equal roles by employing
uv and ir cutoffs which should be taken to infinity and to zero, respectively to achieve
a converged result (see Fig. 3).

From Fig. 1 we conclude uv cutoff Λ =
√

mN (N + 3/2)~ω should be greater
than the intrinsic ΛNN of the NN interaction. Figure 2 suggests that the ir cut-

off λsc =
√

(mN~ω)/(N + 3/2) should be less than the intrinsic λNN
sc of the chosen

NN interaction. Noting that N = Λ/λsc − 3/2 and ~ω = (Λλsc)/mN , one can es-
tablish the minimum values of N and ~ω needed for a converged result (see Table 1).
The intrinsic λNN

sc corresponding to the lowest energy configuration of two nucleons
is not well determined by numerical investigations (see Figs. 4 and 8 of Ref. [13]) so
we include a range of values in Table 1. It is a computational challenge to increase N
which gets harder the more particles there are in the nucleus. From this Table one

Table 1: Intrinsic regulator scales determine N and ~ω for a converged result.

Λ ≥ ΛNN = 800 MeV/c

λNN
sc ≈ 10 MeV/c λNN

sc ≈ 20 MeV/c λNN
sc ≈ 40 MeV/c

N ≥ 80 N ≥ 40 N ≥ 20
~ω ≥ 8 MeV ~ω ≥ 16 MeV ~ω ≥ 32 MeV

Λ ≥ ΛNN = 500 MeV/c

λNN
sc ≈ 10 MeV/c λNN

sc ≈ 20 MeV/c λNN
sc ≈ 40 MeV/c

N ≥ 50 N ≥ 25 N ≥ 12
~ω ≥ 5 MeV ~ω ≥ 10 MeV ~ω ≥ 20 MeV
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concludes that one must extrapolate for all but the lightest nuclei and the softest of
interactions.

We now utilize the scaling behavior displayed on Fig. 1 to suggest an extrapolation
procedure which we illustrate in Figs. 4, 5, and 6. We plot the ground state energy
eigenvalue, the root mean square radius, and the total dipole strength of 4He obtained
by a NCSM calculation [24], done in a translationally invariant basis which depends
only on Jacobi coordinates [25]. The NN interaction is the Idaho N3LO [20] softened
by the similarity renormalization group (SRG) evolution according to the method
described in Ref. [17]. Transforming the Hamiltonian induces the appearance of higher
order many-body forces which should be kept to preserve the unitary nature of the
transformation. If they are not kept results become dependent on the SRG flow
parameter. It is of interest to learn if the scaling behavior apparent in Fig. 1 and
the many examples in Ref. [13] is also true for the induced many-body forces and the
three-body forces added to the Hamiltonian (see Refs. [17, 24] for a full description
of the SRG scheme and nomenclature). For this exercise, we utilized calculations
with ~ω = 22 and 28 MeV and N ≤ 18. The SRG parameter was 1.8 fm−1 and our
own study of the results suggest that the intrinsic uv cutoff of this SRG transformed
interaction is less than 440 MeV/c (see Figures). Then according to Table 1, the
calculations should be fully converged with this model space.

The extrapolation is performed by a fit of an exponential plus a constant to
each set of results at fixed Λ. That is, we fit the ground state energy with three
adjustable parameters using the relation Egs(λsc) = a exp(−b/λsc) + Egs(λsc = 0).
The rms radius and the total dipole strength are obtained by similar fits: r(λsc) =
a exp(−b/λsc) + r(λsc =0) and D2(λsc) = a exp(−b/λsc) +D2(λsc=0). The extrap-
olation formulae work equally well for the induced three-body forces and the added
three-body forces. It should be noted that our extrapolations in these figures employ

an exponential function whose argument 1/λsc =
√

(N + 3/2)/(mN~ω) is propor-

tional to
√

N/(~ω). This extrapolation procedure of taking λsc downward from the
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smallest value allowed by computational limitations treats both N and ~ω on an

equal basis. The exponential extrapolation in
√

N/(~ω) is therefore distinct from the
popular extrapolation which employes an exponential in Nmax (= N for this s-shell
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case) [7, 9, 10, 17]. The convergence of all three operators is the same with the λsc

extrapolation, in contrast to the traditional extrapolation for the same data which
found slower and slower convergence for the ground state energy eigenvalue, the root
mean square radius, and the total dipole strength [24]. As the model space is large
and the intrinsic uv cutoff is small, the extrapolated results obtained here agree with
those of the traditional extrapolation of Ref. [24].

Finally, we return to Fig. 2 and restrict our attention to the sector Λ ≤ ΛNN .
The universal curve in that sector is generalized to three s-shell nuclei in Fig. 7
where all momenta are scaled by the binding momentum Q of the considered nu-
cleus in order to put them on the same plot. For such low fixed momenta λsc,
|∆E/E| does go to zero with increasing Λ because λsc ≤ λNN

sc . The “high” Λ tails
of these curves were fit by Gaussians (shifted from the origin) in the variable Λ/Q
in Ref. [13]. This behavior suggests another possible extrapolation scheme; fixing
the ir physics first and then extrapolating in the uv cutoff. A later paper did ad-
vocate such an extrapolation with Λ2 in the exponential fit function [26]. We have

tried to fit our data with the ansatz, Egs(Λ) = A exp(−2Λ2/ΛNN2
) + E(Λ = ∞),

of that paper and failed. Because the Gaussians are shifted from the origin, a fit

requires Egs(Λ/Q) = a exp
[

−(Λ/Q− b)2/2c2
]

+ E(Λ/Q=∞), provided that one re-

stricts to values of Λ/Q ≤ ΛNN/Q. Such fits are shown in Fig. 8.
Unfortunately, the extrapolated energies of Fig. 8 do not agree with those obtained

from independent calculations. The extrapolated energies are always lower: 2 keV
for the deuteron, 300 keV (or 4%) for the triton and 20 keV(or 2.4 %) for the alpha
particle. It is difficult to achieve consistent extrapolations with different values of
fixed (low) λsc. For example, if one takes λsc = 12 MeV/c, seemingly closer to the ir
limit so that even more of the ir physics is captured, the extrapolated triton energy
is −10.149 MeV; 2.3 MeV below the accepted value. Only with the SRG transformed
potentials does the extrapolation illustrated in Fig. 8 agree with other independent
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sc . Both uv and ir cutoffs are scaled to Q,

the binding momentum of each nucleus, so that the s-state nuclei can be fit on a
single plot. The unscaled values are λsc = 10 MeV/c for 2H, λsc = 20 MeV/c for 3H
and λsc = 40 MeV/c for 4He. The arrows indicate that the UV extrapolation uses
only points for which Λ ≤ ΛN3LO.

calculations.
In conclusion, we have established that an extrapolation in the ir cutoff with the

uv cutoff above the intrinsic uv scale of the interaction is quite successful, not only
for the eigenstates of the Hamiltonian but also for expectation values of operators
considered long range. On the other hand, the suggested extrapolation [26] in the uv
cutoff when the ir cutoff is below the intrinsic ir scale is neither robust nor reliable.
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