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Abstract

We have evaluated the generalized parton distributions (GPDs) from the
electromagnetic form factors of the nucleons. The light front wave functions of
the nucleons are obtained from soft wall model in AdS/QCD.We have considered
a quark model with SU(6) spin-flavor symmetry. The GPDs in impact parameter
space are compared with a phenomenological model.
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1 Introduction

Generalized parton distributions (GPDs) encode more informations about the hadron
than the ordinary parton distributions (PDFs). The GPDs are functions of three vari-
ables namely, longitudinal momentum fraction x of the quark or gluon, square of the
total momentum transferred (t) and the skewness ζ which represents the longitudinal
momentum transferred in the process and contain lot more informations about the
nucleon structure and spin compared to the ordinary PDFs which are functions of x
only. There are many good review articles on the GPDs [1]. The GPDs appear in
the exclusive processes like Deeply Virtual Compton Scattering (DVCS) or vector
meson productions and are expressed as off-forward matrix elements of bilocal light
front currents. The GPDs reduce to the ordinary parton distributions in the forward
limit and their first moments are related to the form factors and provide interest-
ing informations about the spin and orbital angular momentum of the constituents
as well as the spatial structure of the nucleons. Being off-forward matrix elements,
the GPDs have no probabilistic interpretation. But for zero skewness, the Fourier
transforms of the GPDs with respect to the transverse momentum transfer (∆⊥) give
the impact parameter dependent GPDs which satisfy the positivity condition and can
be interpreted as distribution functions [2]. The impact parameter dependent GPDs
provide us the information about partonic distributions in the impact parameter or
the transverse position space for a given longitudinal momentum (x). The impact
parameter b⊥ gives the separation of the struck quark from the center of momentum.
In the t→ 0 limit, Ji sum rule [3] relates the moment of the GPDs to the angular
momentum contribution to the nucleon by the quark or gluon. Lot of experiments
measured DVCS as well as vector meson production cross sections to gain informa-
tions about the GPDs [4]. Experiments will also be done in JLAB in near future.

Using AdS/QCD, one can extract the light front wave functions (LFWF) for the
hadrons and thus provides an interesting way to calculate the GPDs. Polchinski and
Strassler [5] first used the AdS/CFT duality to address the deep inelastic scattering.
The AdS/QCD for meson and baryon sectors have been developed by several groups
[6–8]. So far this method has been successfully applied to describe many hadron
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properties, e. g., hadron mass spectrum, parton distribution functions, meson and
nucleon form factors, structure functions, etc. [9–11]. Recently it has been shown that
the results for ρmeson electroproduction calculated with the light front wave functions
derived from AdS/QCD are in agreement with experimental data [12]. Studies of the
nucleon form factors with higher Fock sectors have been done in Ref. [13]. Vega et
al. [14] proposed a prescription to extract GPDs from the form factors in AdS/QCD
and they have done the GPD calculations using both the hard and soft wall models
in AdS/QCD. Here we provide the results for GPDs using the LFWFs obtained from
the AdS/QCD [15]. We use the formula for the nucleon form factors in the light
front quark model with SU(6) spin flavor symmetry and compare the GPDs in the
impact parameter space with a phenomenological model of the GPDs for the proton.
The GPDs are related to the Dirac and Pauli form factor by sum rules and thus it is
possible to extract the flavor form factors, i. e., individual quark contributions to the
nucleon form factors. Recently, the flavor form factors calculated from the GPDs in
this model are shown to agree remarkably with the experimental data [16].

2 GPDs in AdS/QCD

For the extraction of the nucleon wavefunctions in AdS/QCD we follow Brodsky and
Teramond [6,11]. We know that the AdS/CFT correspondence relates a gravitation-
ally interacting theory in anti de Sitter space AdSd+1 with a conformal gauge theory
in d-dimensions residing at the boundary. Since QCD is not a conformal theory, one
needs to break the conformal invariance of the above duality to generate a bound
state spectrum and to relate with QCD. There are two models in the literature to
do so. One is the hard wall model in which the conformal symmetry is broken by
introducing a boundary at z0 ∼ 1/ΛQCD in the AdS direction where the wavefunction
is made to vanish. While in the soft wall model, the conformal invariance is broken by
introducing a confining potential in the action of a Dirac field propagating in AdSd+1

space.
We will consider the soft model in this paper. The relevant action in soft model

is written as [11]

S =

∫

d4x dz
√
g
( i

2
Ψ̄ eMA ΓADM Ψ− i

2
(DM Ψ̄) eMA ΓA Ψ− µ Ψ̄Ψ− V (z) Ψ̄Ψ

)

, (1)

where eMA = (z/R) δMA is the inverse vielbein and V (z) is the confining potential, R
is the AdS radius. The corresponding Dirac equation in AdS is given by

i
(

z ηMN ΓM ∂N +
d

2
Γz

)

Ψ− µRΨ−RV (z)Ψ = 0. (2)

With z identified as the light front transverse impact variable ζ which gives the sepa-
ration of the quark and gluonic constituents in the hadron, it is possible to extract the
lightfront wavefunctions for the hadron. In d = 4 dimensions, ΓA = {γµ,−iγ5}. The
form of the confining potential in the meson sector can be determined by introducing

a dilaton background profile of the form φ(z) = e±κ2z2

. It generates an effective lin-
ear confining potential of U(ζ) = (R/ζ)V (ζ) = κ2ζ in the light front Dirac equation.
For the baryon sector, the dilaton profile can be scaled away by redefinition of the
fields [11]. In the baryon sector, the linear confining potential same as the meson
sector is put in by hand. The nucleon wavefunctions in the soft wall model are given
by [11]

ψ+(z) =

√
2κ2

R2
z7/2 e−κ2z2/2, (3)

ψ−(z) =
κ3

R2
z9/2 e−κ2z2/2. (4)



GPDs for the proton 115

The Dirac and Pauli form factors for the nucleons are related to the GPDs by the
sum rules [17]

F p
1 (t) =

∫ 1

0

dx

[

2

3
Hu

v (x, t)−
1

3
Hd

v (x, t)

]

,

Fn
1 (t) =

∫ 1

0

dx

[

2

3
Hd

v (x, t)−
1

3
Hu

v (x, t)

]

,

F p
2 (t) =

∫ 1

0

dx

[

2

3
Eu

v (x, t) −
1

3
Ed

v (x, t)

]

,

Fn
2 (t) =

∫ 1

0

dx

[

2

3
Ed

v (x, t) −
1

3
Eu

v (x, t)

]

.

(5)

Here x is the fraction of the light cone momentum carried by the active quark and
the GPDs for valence quark q are defined as Hq

v (x, t) = Hq(x, 0, t) + Hq(−x, 0, t);
Eq

v(x, t) = Eq(x, 0, t) + Eq(−x, 0, t). The GPDs at −x for quark are equal to the
GPDs at x for antiquark with a minus sign.

A quark model with SU(6) spin-flavor symmetry is constructed by weighting the
different Fock components in the nucleon state by the charge and spin-projections of
the quarks as dictated by the symmetry [11]. The Dirac form factors for the nucleons
in this model are given by

F p
1 (Q

2) = R4

∫

dz

z4
V (Q2, z)ψ2

+(z) (6)

Fn
1 (Q

2) = −1

3
R4

∫

dz

z4
V (q2, z) (ψ2

+(z)− ψ2
−(z)). (7)

The Pauli form factors requires non-minimal electromagnetic coupling as proposed by
Abidin and Carlson [10] and are given by

F
p/n
2 (Q2) ∼

∫

dz

z3
ψ+(z)V (Q2, z)ψ−(z). (8)

The normalization conditions are given by F
p/n
1 (0) = ep/n, where ep/n represents the

electric charge of proton/neutron and F
p/n
2 (0) = κp/n where κp/n is the anomalous

magnetic moment of the proton/neutron. Using the the above mentioned wavefunc-
tions ψ+ and ψ−, the Pauli form factors fitted to the static values are rewritten as

F
p/n
2 (Q2) = κp/nR

4

∫

dz

z4
V (Q2, z)ψ2

−(z). (9)

The bulk-to-boundary propagator for soft wall model is given by

V (Q2, z) = Γ

(

1 +
Q2

4κ2

)

U

(

Q2

4κ2
, 0, κ2z2

)

, (10)

where U(a, b, z) is the Tricomi confluent hypergeometric function given by

Γ(a)U(a, b, z) =

∫ ∞

0

e−zx xa−1(1 + x)b−a−1 dx. (11)

The above propagator can be written in a simple integral form [11, 18]

V (Q2, z) = κ2z2
∫ 1

0

dx

(1− x)2
xQ

2/(4κ2) e−κ2z2x/(1−x). (12)

We use the integral form of the bulk-to-boundary propagator in the formulas for the
form factors in AdS space to extract the GPDs using the formulas in Eq. (5). In
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Figure 1: The ratio of the Pauli and Dirac form factors for the proton multiplied
by Q2 = −t. The experimental data are taken from Refs. [19–22].

Fig. 1, we show the fit of our result with the experimental proton form factor data.
We found that the best fit to the form factors obtained for κ = 0.4066 GeV. All the
calculations and plots presented here are done with this fixed value of κ.

In Figs. 2 (a) and (b) we have shown the GPD H(x, t) as functions of x for
different −t values for up and down quarks. Except the fact that it falls off faster
for d quark as x increases, the overall nature is the same for both u and d quarks.
Similarly in Figs. 3 (a) and (b) we have shown the GPD E(x, t) as a function of x for
different −t for u and d quark. Unlike H(x, t), the fall off of the GPD E(x, t) with
increasing x is similar for both u and d quark.

3 GPDs in impact parameter space

GPDs in transverse impact parameter space are defined as [23]:

H(x, b) =
1

(2π)2

∫

d2∆ e−i∆⊥
·b⊥H(x, t),

E(x, b) =
1

(2π)2

∫

d2∆ e−i∆⊥
·b⊥E(x, t).

(13)

The transverse impact parameter b = |b⊥| is a measure of the transverse distance
between the struck parton and the center of momentum of the hadron and satisfies
∑

i xibi = 0, where the sum is over the number of partons. An estimate of the size
of the bound state can be obtained from the relative distance between the struck
parton and the centre of momentum of the spectator system and is given by b

1−x [17].
However as the spatial extension of the spectator system is not available from the
GPDs, exact estimation of the nuclear size is not possible. In Figs. 4 (a) and (b), we
have shown the behavior of Hu/d(x, b) in the impact parameter space for fixed values
of x and the similar plots for the GPD Eu/d(x, b) are shown in Fig. 5.

We compare the AdS/QCD results for the GPDs in impact parameter space with
those obtained from a phenomenological model for proton [24]. The GPDs in this
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(a)

(b)

Figure 2: Plots of (a) Hu(x, t) vs x for fixed values of −t. (b) same as in (a) but for
d quark.

model are given by

Hq(x, t) = Gλq

Mq

x

(x, t)x−αq
−βq

1
(1−x)p1t, (14)

Eq(x, t) = κqG
λq

Mq

x

(x, t)x−αq
−βq

2
(1−x)p2t, (15)

where the first part is derived from spectator model and modified by Regge term to
have proper behavior at low x. κq in the above equation is the quark contribution
to the anomalous magnetic moment. The parameters are fixed by fitting the form
factors. The details of the functional forms and the values of the parameters can be
found in Ref. [24]. The impact parameter dependent GPDs from this model have
been studied in Ref. [25]. One should remember here that the valence GPDs we have
considered here in AdS/QCD are not exactly the same as GPDs in this model and
so exact agreement is not expected. But one should expect that the valence GPDs
will dominate the overall behavior for the proton GPDs and thus it is interesting to
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(a)

(b)

Figure 3: Plots of (a) Hu(x, t) vs x for fixed values of −t. (b) same as in (a) but for
d quark.

compare and contrast the GPDs from these two models.

In Fig. 6 we have compared the impact parameter dependent proton GPD H(x, b)
from AdS/QCD with the model mentioned above, for both u and d quarks. The
GPDs are fatter in the AdS/QCD compared to the model when plotted against x,
while in the impact parameter space they look almost same except the difference in the
magnitudes. In Fig. 7 we have compared the two models for the proton GPD E(x, b).
The behavior in x for u quark is quite different in the two models while they agree
better for d quark and again the GPDs from AdS/QCD are fatter compared to the
other model. In the model, the behavior of E(x, b) for u and d quarks is quite
different when plotted against x for fixed values of impact parameter b whereas in the
AdS/QCD, it shows almost same behavior for both u and d quarks. As a result, the
GPD E in both models agrees better in impact parameter space for the d quark than
for the u quark. It is interesting to note that in both cases, at small values of impact
parameter b, the the GPD H(x, b) is larger for u quark than for d quark whereas the
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Figure 4: Plots of (a) Hu(x, t) vs b for fixed values of x. (b) same as in (a) but for d
quark.

magnitude of the GPD E(x, b) is marginally larger for d quark than the same for u
quark and thus it is interesting to check with other models whether this is a model
independent result.

4 Conclusions

The main results of this work are the GPDs calculated in a quark model with SU(6)
spin-flavor symmetry in AdS/QCD. The light front wave functions for the nucleons
are evaluated from AdS/QCD. The parameter κ in the model is fixed by fitting the ex-
perimental data on proton form factors. The Pauli form factors require non-minimal
electromagnetic coupling and are fitted to their static values. It was shown [11]
that the electromagnetic form factors for proton and neutron calculated by using the
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Figure 5: Plots of (a) Eu(x, t) vs b for fixed values of x. (b) same as in (a) but for d
quark.

AdS/QCD wave functions fit well with the experimental results. The Dirac and Pauli
form factors for the nucleons are given by the first moments of the GPDs weighted
with proper charge factors. Using these sum rules for the GPDs and exploiting the
integral representation of the bulk-to-boundary propagator in AdS space we evalu-
ate the GPDs for both up and down quarks. The Fourier transform of the GPDs
with respect to the transverse momentum transferred give the GPDs in the impact
parameter space. Though the GPDs don’t have any density interpretation, the im-
pact parameter dependent GPDs for zero skewness are positive definite and related
with the charge and magnetization densities of the nucleons. We have compare the
impact parameter dependent GPDs in the model with the GPDs obtained from a
phenomenological model. It is found that the GPDs from AdS/QCD are fatter than
the other model when compared the behaviors in x space for both u and d quarks. In
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Figure 6: Plots of (a) Hu(x, b) vs x for fixed values of b = |b⊥|. (b) Hu(x, b) vs b for fixed values of x. (c) same as in (a) but for d quark and (d) same
as in (b) but for d quark.
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Figure 7: Plots of (a) Eu(x, b) vs x for fixed values of b = |b⊥|. (b) Eu(x, b) vs b for fixed values of x. (c) same as in (a) but for d quark and (d) same
as in (b) but for d quark.
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the AdS/QCD we have only valence GPDs and as we expect that major contributions
to proton GPDs should come from valence quarks, it is interesting to note that their
behaviors in impact parameter space are quite similar to the phenomenological model
for GPDs.
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