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Abstract

We report on our recent application of the Monte Carlo Shell Model (MCSM)
to no-core calculations. After the brief introduction, the performance of the
MCSM on the K computer is discussed. At the initial stage of the application,
we have performed benchmark calculations in the p-shell region. Results are
compared with those in the Full Configuration Interaction and No-Core Full
Configuration methods. These are found to be consistent with each other within
quoted uncertainties when they could be quantified. The preliminary results
in Nshell = 5 reveal the onset of systematic convergence pattern.
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1 Introduction

One of the major challenges in nuclear theory is to reproduce and to predict nu-
clear structure and reactions from ab initio calculations with realistic nuclear forces.
Among the ab initio nuclear many-body approaches for A ≥ 4 [1], the No-Core Shell
Model (NCSM) is one of the powerful methods for the study of nuclear structure and
reactions in the p-shell nuclei [2].

As the NCSM treats all the nucleons on an equal footing, computational de-
mands for the calculations explode exponentially as the number of nucleons increases.
Current computational resources limit the direct diagonalization of the Hamiltonian
matrix using the Lanczos algorithm to basis spaces with a dimension of around 1010.
Shell-model calculations in the Nshell truncation is limited in the lower p-shell re-
gion (Fig. 1). In order to access heavier nuclei beyond the p-shell region with larger
basis dimensions, many efforts have been devoted to the NCSM calculations. One
of these approaches is the Importance–Truncated NCSM (IT-NCSM) [3] where the
basis spaces are extended by using an importance measure evaluated using pertur-
bation theory. Another approach is the Symmetry–Adapted NCSM (SA-NCSM) [4]
where the basis spaces are truncated by the selected symmetry groups. Similar to
these attempts, the Monte Carlo NCSM (MC-NCSM) [5, 6] is one of the promising
candidates to go beyond the Full Configuration Interaction (FCI) method which is a
different truncation of the basis states that commonly used in the NCSM. Shell-model
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Figure 1: M -scheme dimension
for light nuclei as a function of
basis space cutoff, Nshell.

calculations with an assumed inert core by the MCSM have succeeded in obtaining
the approximated solutions where the direct diagonalization is difficult due to large
dimensionalities as described in Fig. 2.

In these proceedings, we focus on the latest application of the MCSM toward the
ab initio no-core calculations, which has become feasible recently with the aid of the
major developments in the MCSM algorithm [7] and also a remarkable growth in the
computational power of the state-of-the-art supercomputers, such as the K computer.
Most of the benchmark results in the MC-NCSM presented here are summarized in
Ref. [6].

2 Monte Carlo Shell Model

2.1 Brief overview

The MCSM has been developed mainly for conventional shell-model calculations with
an assumed inert core [8]. Recently the algorithm and code itself have been heav-
ily revised and rewritten so as to accommodate massively parallel computing envi-
ronments [7]. Now we can apply the MCSM not only to conventional shell-model
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Figure 2: M -scheme dimension for conventional shell-model calculations with an as-
sumed inert core as a function of publication year (right). Red squares are for the
MCSM results, and black circles are for the conventional shell-model results by the
direct diagonalization with the Lanczos technique.



296 T. Abe, P. Maris, T. Otsuka, N. Shimizu, Y. Tsunoda, Y. Utsuno and J. P. Vary

calculations but also to no-core calculations.
The MCSM approach proceeds through a sequence of diagonalization steps within

the Hilbert subspace spanned by the deformed Slater determinants in the HO single-
particle basis. The many-body basis state |ΨJ

π
M 〉 is approximated as a linear combi-

nation of non-orthogonal angular-momentum (J) and parity (π) projected deformed
Slater determinants with good total angular momentum projection (M),

|ΨJ
π
M 〉 =

Nb∑

n=1

fn

J∑

K=−J

gnK P J

MK P π|φn〉, (1)

where Nb is the number of Slater determinants. P J
MK

is the projection operator for
the total angular momentum J with its z-projection in the laboratory (body-fixed)
frame, M (K). P π is the projection operator for the parity. The coefficients f and g
are determined by the diagonalization of Hamiltonian matrix. The deformed Slater
determinant |φ〉 in Eq. (1) is described as

|φ〉 =
A∏

i=1

a†
i
|−〉, (2)

with the vacuum |−〉 and the creation operator, a†
i
=

∑Nsp

α=1 c
†
α Dαi. Nsp is specified

by the cutoff of the single particle basis space, Nshell. The transformation coeffi-
cientsD form the complexNsp×Amatrix with the normalization condition, D†D = 1.
Importance-truncated bases |φ〉 are stochastically sampled so as to minimize the en-
ergy variationally. With increasing the number of importance-truncated basis states,
the computed energy converges from above to the exact value and gives the variational
upper bound. An exploratory no-core MCSM investigation of the proof-of-principle
type has been done for the low-lying states of the Be isotopes by applying the existing
MCSM algorithm with a core to a no-core problem [5].

Recent improvements on the MCSM algorithm have enabled significantly larger
calculations [7]. The crucial developments for no-core calculations achieve (1) the
efficient computation of matrix products for the most time-consuming part in the
MCSM calculations, (2) the conjugate gradient method in the basis-search process,
and (3) the energy-variance extrapolation for our MCSM (approximated) results into
the FCI (exact) ones in the finite basis spaces. Because of space limitations, we refer
for the details of these improvements to Ref. [7].

As a typical example of the implementation, the behavior of the ground-state
energies of 4He (0+) and 12C (0+) with respect to the number of basis states and to
the energy variance are shown in Fig. 3. From Fig. 3, one can see that the MCSM
results can be extrapolated into the FCI ones by using the quadratic fit function with
respect to the energy variance ∆E2 of E(∆E2) = E(∆E2 = 0) + c1∆E2 + c2(∆E2)

2

with the fit parameters, E(∆E2 = 0), c1, and c2.

2.2 Tests on the K computer

At the initial stage of the implementation of K computer, we have performed some
test calculations to measure our code performance. In this subsection, we show some
of the test calculations: the ratio to the peak performance and the parallel efficiency
of our code.

In order to measure our code performance on K computer, we have chosen the
optimization of 15th basis dimension of the wave function in Nshell = 5 with 100 CG
iterations without the preprocessing as a test case. The code has run on K computer
by using MPI/OpenMP with 8 threads.

Figure 4 illustrate our recent MCSM code performance. The left panel of Fig. 4
shows the ratio to the peak performance in the calculation of the 4He 0+ ground
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Figure 3: 4He and 12C 0+ ground-state energies as functions of number of basis
states (left) and energy variance (right). From the above to the bottom, the symbols
(horizontal dashed lines in the left figure and open symbols at the zero energy variance
in the right figure) are the MCSM (FCI) results in Nshell = 2, 3, 4 and 5, respectively.
Note that the results of 12C in Nshell = 4 and 5 are obtained only by the MCSM. See
Ref. [6] for the details.

state. Although the performance decreases as the number of CPU cores increases, it
is around 30–40% up to 30720 cores (8 cores per node). The right panel of Fig. 4
shows the ratio to the peak performance as a function of the atomic numbers. The
nuclear states listed in the figure are for the ground state of each nucleus. From the
figure, the dependence of the performance on atomic number A is relatively weak for
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Figure 4: Ratio to the peak performance of the MCSM test calculations. Peak ratio
of the calculation for the 4He (0+) ground state as a function of the number of cores
(left). Peak ratio of the calculation for the ground states as a function of the number
of nucleons (right). Red circles denotes the results with 30720 cores, and blue squares
are with 15360 cores.
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Figure 5: Speedup of the parallel computation with arbitrary unit (left), and the
strong scaling (right).

the number of nucleons at least up to A = 12.

For testing the parallel efficiency, we have measured the dependence on the number
of CPU cores. Figure 5 demonstrates the speedup (left) and the strong scaling (right)
of our MCSM code on K computer as a function of the cores. The test case is the
optimization of the 15th (48th) basis for 4He (0+) ground state in Nshell = 5 (6)
with 100 CG iterations without the preprocessing. Each setup has been chosen so
that the number of MPI tasks is divisible by Nprocs, for simplicity. 32× 32× 30 mesh
points are used for the angular momentum projection, and 2 for the parity projection.

The left panel describes the speedup with arbitrary unit. In Fig. 5, the dotted
line describes the perfect (ideal) scaling. The right panel of Fig. 5 is about the strong
scaling. Here αstrong is defined by the ratio of the time T with the number of CPU
cores Nprocs as αstrong ≡ T (Nprocs)/(T (Nprocs/2)× 2). In this definition, αstrong = 1
describes the perfect strong scaling. As seen in Fig. 5, the strong scaling is nearly
perfect up to 98304 cores both in Nshell = 5 and 6.

3 Benchmarks

The recent development of the MCSM algorithm [7] , together with significant com-
putational resources, enables us to perform a benchmark of no-core MCSM calcula-
tions [6]. Figure 6 is the recent comparison of the energies for each state and basis
space in the selected p-shell nuclei between the MCSM and FCI methods. The FCI
gives the exact energies in the finite basis spaces, while the MCSM provides approxi-
mate energies. Thus the comparisons between them show how well the MCSM works
in no-core calculations. Furthermore, we also plot the No-Core Full Configuration
(NCFC) [9] results for the states of 4 ≤ A ≤ 10 as the fully converged energies in the
infinite basis space.

For this benchmark comparison, the JISP16 two-nucleon interaction [10] is adopted
and the Coulomb force is turned off. The energies are evaluated for the optimal
harmonic oscillator frequencies where the calculated energies are minimized for each
state and basis space. Here the contributions from the spurious center-of-mass motion
are ignored for simplicity. The basis space ranges from Nshell = 2 to 5 where Nshell is
the number of the major shell included in the basis space. Some energies in Nshell = 4
and 5 are available only from the MCSM results, as the M -scheme dimensions for
these states are already close to or above the current computational limitation in the
FCI approach. We took 100 importance-truncated basis states and extrapolated the
results by the energy variance.

As seen in Fig. 6, the energies are consistent with each other to within ∼ 100 keV
where both results are available. Furthermore the Nshell = 5 results begin to show
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Figure 6: Comparisons of the energies between the MCSM and FCI along with the
fully converged NCFC results where available. The NCFC result for the 10B(1+)
state has a large uncertainty indicated by the grey band. The MCSM (FCI) results
are shown as the solid (dashed) lines that nearly coincide where both are available.
The extrapolated MCSM results are illustrated by bands. From top to bottom, the
truncation of the basis space is Nshell = 2 (red), 3 (green), 4 (blue), and 5 (purple).
Note that the MCSM results are extrapolated by the energy variance with the second-
order polynomials. Also note that the FCI results in Nshell = 2 (red dotted lines)
and 3 (green dotted lines) are almost overlapped with the MCSM results (red and
green solid lines), which means that the MCSM results are converged well to the FCI
results. Some results in Nshell = 4 and 5 were obtained only with MCSM.

the trend of the convergence to the NCFC results obtained by extrapolating the Nmax

truncated results to the infinite basis space. The next step is to extrapolate the Nshell

results to the infinite basis space by using the extrapolation techniques in the Nmax

truncation [9, 11, 12]. In principle, the results extrapolated to the infinite basis space
should be consistent with each other in spite of how the basis spaces are truncated.
It is interesting to examine whether the extrapolated results in the Nshell and Nmax

truncations converge to the same value within quantified uncertainties. The detailed
comparisons among the MCSM, FCI, and NCFC methods are discussed in Ref. [6].

4 Summary

By exploiting the recent development in the MCSM algorithm, no-core calculations
with the MCSM algorithm can be achieved on massively parallel supercomputers. As
a test on such environments, we have discussed the performance of the MCSM on the
K computer. From the benchmark calculations, the observables give good agreement
between the MCSM and FCI results in the p-shell nuclei. The Nshell = 5 results reveal
the onset of systematic convergence pattern. Further work is needed to investigate
the extrapolation to the infinite basis space in the Nshell truncation.
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