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Time-­‐dependent	
  Basis	
  Light-­‐front	
  Quan9za9on	
  

•  BLFQ:	
  	
  for	
  quantum	
  field	
  eigenspectrum	
  
•  tBLFQ:	
  for	
  quantum	
  field	
  evolu9on	
  

	
  
•  Real-­‐9me	
  framework:	
  BLFQ	
  	
  	
  	
  	
  	
  	
  	
  tBLFQ	
  
•  tBLFQ	
  is	
  designed	
  for:	
  	
  

– 9me-­‐dependence	
  in	
  dynamical	
  processes	
  
–  in	
  strong/9me-­‐dependent	
  background	
  field	
  

2	
  

BLFQ	
  

P− ψ = Pψ
− ψ

tBLFQ	
  

i ∂
∂x+

ψ (x+ ) = 1
2
P− ψ (x+ )



Applica9on	
  to	
  Strong	
  QED:	
  	
  
Nonlinear	
  Compton	
  Sca$ering	
  

•  	
  	
  
•  	
  1020	
  photons	
  in	
  a	
  laser:	
  model	
  as	
  background	
  field	
  

•  Perturba9on	
  theory:	
  
•  	
  	
  
	
  
•  At	
  high	
  intensity:	
  
	
  	
  	
  	
  	
  nonperturba9ve	
  	
  
	
  	
  	
  	
  	
  treatment	
  needed	
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  e+ nγ (laser)→ e '+ γ '

σ ∝Klein-Nishina × A2

pµ

p′µ kµ

Aµ(x)

+

pµ

p′µ kµ

Aµ(x)

+

pµ

p′µ kµ

Aµ(x)

+…



•  Space-­‐9me	
  structure	
  

	
  

•  Two	
  effects:	
  accelera9on	
  and	
  radia9on	
  
	
  

Setup	
  for	
  Nonlinear	
  Compton	
  Sca$ering	
  

x−
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Laser	
  trajectory	
  



A	
  Simple	
  Laser	
  Field	
  Profile	
  

•  Key	
  proper9es:	
  
― 	
  	
  	
  	
  	
  	
  is	
  treated	
  classically	
  w/	
  
― 	
  	
  	
  	
  	
  	
  	
  only;	
  uniform	
  in	
  x1,2	
  	
  and	
  light-­‐front	
  9me	
  x+	
  	
  
― 	
  	
  	
  	
  	
  	
  depends	
  only	
  on	
  x-­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  electric	
  field	
  in	
  longitudinal	
  direc9on	
  
― 	
  	
  	
  	
  	
  :	
  the	
  field	
  strength	
  
― 	
  	
  	
  	
  	
  :	
  the	
  laser	
  field’s	
  spa9al	
  frequency	
  in	
  x-­‐	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (longitudinal	
  momentum)	
  

	
  

a0

eA− (x− ) = mea0 cos l−x
−( )

A+ = 0

F +− =E − ≠ 0

 A
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A−

A−

l−



General	
  Procedure	
  for	
  tBLFQ	
  
1.  Derive	
  Lighhront-­‐Hamiltonian	
  from	
  Lagrangian	
  
2.  Switch	
  to	
  the	
  interac9on	
  picture	
  	
  
3.  Prepare	
  the	
  ini9al	
  (‘in’)	
  state	
  
4.  Evolve	
  the	
  ini9al	
  state	
  un9l	
  the	
  background	
  field	
  

subsides	
  
5.  Project	
  the	
  sca$ering	
  final	
  state	
  onto	
  ‘out’	
  states	
  

(constructed	
  out	
  of	
  QED	
  eigenstates)	
  and	
  obtain	
  S-­‐
matrix	
  element	
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Derive	
  Lighhront	
  QED	
  Hamiltonian	
  

•  QED	
  Lagrangian	
  
•  Lighhront	
  Hamiltonian	
  from	
  Legendre	
  transform	
  

9	
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dition to intense laser physics, we will also apply tBLFQ
to relativistic heavy-ion physics, specifically the study of
particle production in the strong (color)-electromagnetic
fields of two colliding nuclei. Ultimately, the goal is to
use tBLFQ to address strong scattering problems with
hadrons in the initial and/or final states. As super-
computing technology continues to evolve, we envision
that tBLFQ will become a powerful tool for exploring
QCD dynamics.
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Appendix A: The light-front QED Hamiltonian

In this section we follow the derivation of the Hamil-
tonian in [18], but with an additional background field.
The Lagrangian is

L = �1

4
Fµ⌫Fµ⌫ +  ̄(i�µDµ � me) , (A1)

in which Dµ ⌘ @µ + ieCµ and Cµ = Aµ + Aµ is the sum
of the background and quantum gauge fields respectively.
Note that Fµ⌫ is calculated from Aµ alone, i.e. there is
no kinetic term for the background, which is fixed. The
equations of motion for the fields are

@µFµ⌫ = e ̄�⌫ =: ej⌫ , (A2)

which defines the current j⌫ , and
⇥
i�µDµ � me

⇤
 = 0 . (A3)

The background field appears in the equations of motion
for the fermion, but not for the gauge field. We now
analyze these equations in light-front coordinates (x± =
x0 ± x3, and x± = 2x

⌥

). We work in light-front gauge,
so that A+ = A+ = 0. The ⌫ = + component of (A2)
does not contain time derivatives, and can be written

1

2
A� =

@?A?

@+
� e

j+

(@+)2
. (A4)

This is a constraint equation which relates the (non-
dynamical) field A� to the transverse components A?

and the fermion current. Similarly, if we multiply (A3)
by �+ on the left, we find a constraint equation for the
fermion field. Defining first the orthogonal field compo-
nents

 � ⌘ 1

4

�+�� ,  + ⌘ 1

4

���+ , (A5)

the constraint equation may be written

 � =
1

2i@+

⇥
me � i�?D?

⇤
�+ + , (A6)

Hence, the field  � is non-dynamical and can be ex-
pressed in terms of the dynamical field  +. We now turn
to the construction of the Hamiltonian. The conjugate
momenta are

@L
@@+ 

= i ̄�+ ,
@L

@@+Aµ
= Fµ+ (A7)

and the Hamiltonian P� = 2P+ is then

P� =

Z
d2x?dx� Fµ+@

+

Aµ + i ̄�+@+ � L

=

Z
d2x?dx� Fµ+@

+

Aµ +
1

4
Fµ⌫Fµ⌫ + i ̄�+@+ ,

(A8)

in which the first line is the standard Legendre transfor-
mation, and in the second line we have used the equations
of motion. It is convenient to add a total derivative to
the Hamiltonian [18], the term �@µ(Fµ+A+), and again
use the equations of motion to write

P� =

Z
d2x?dx� 1

4
Fµ⌫Fµ⌫ � Fµ+Fµ+

+ i ̄�+D+ + e ̄�+A+ .
(A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time deriva-
tives of the fields in favour of the fields themselves, and
their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj

@+
, Aj} . (A10)

The first line of (A9) then becomes

1

4
F ijFij � 1

2
F+�F

+�

=
1

2
Ãj(i@?)2Ãj +

e2

2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †

+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
1

i@+
[me + i�?D?] + .

(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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picture we need to eliminate the light-front time deriva-
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their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj
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The first line of (A9) then becomes

1

4
F ijFij � 1

2
F+�F

+�

=
1

2
Ãj(i@?)2Ãj +

e2

2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †

+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
1

i@+
[me + i�?D?] + .

(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †

+[me�i�?@?]
1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †

+[e�?C?]
1

i@+
[me + i�?@?] +

+ †

+[me � i�?@?]
1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�

QED

.
The second line contains the new terms generated by the
background field. We label the terms in P�

QED

as Tf , T� ,
W

1

. . . W
3

respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W

1

is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W

2

is the instantaneous-photon interaction and
W

3

is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †

+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W

2

and W
3

, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P

�

QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�

QED

, are
listed below.
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kine9c	
  energy	
  terms	
  

vertex	
  
interac9on	
  

instantaneous	
  
photon	
  

interac9on	
  

instantaneous	
  
fermion	
  

interac9on	
  
	
  

A+ = 0( )PQED
−



QED	
  in	
  background	
  EM	
  field	
  

	
  
•  Replace	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  obtain	
  	
  

•  	
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 A→ A + A

P− = PQED
− +
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Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †

+[me�i�?@?]
1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †

+[e�?C?]
1

i@+
[me + i�?@?] +

+ †

+[me � i�?@?]
1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�

QED

.
The second line contains the new terms generated by the
background field. We label the terms in P�

QED

as Tf , T� ,
W

1

. . . W
3

respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W

1

is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W

2

is the instantaneous-photon interaction and
W

3

is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †

+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W

2

and W
3

, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P

�

QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�

QED

, are
listed below.

= PQED
− +V

d 2∫ x⊥dx−ejµAµ

PQED
− P−
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3

of P�
QED, | � i.

S = Ih out |T
+

exp

✓
� i

2

x+
fZ

0

VI

◆
| in iI . (14)

Similar to ‘in’ states, ‘out’ states are also superposition
of physical particles and can thus be constructed out of
the eigenstates of P�

QED, | � i.
[Combine red and blue text into something short and

sexy: comparison between what we do and what is nor-
mally done, in pert. theory.]

Let us compare this approach to the usual scattering
approach in perturbation theory. There, the initial state
would be an asymptotic state, describing free particles at
x+ = �1, under the usual assumption that the coupling
switches o↵ at large times. This ‘in’ state, | i i would be
evolved through all time, from the infinite past to the in-
finite future. The evolved state would then be projected
onto a second free particle state, the ‘out’ state | f i, to
obtain an S-matrix element Sfi = h f |S| i i, with

Sfi = h f |T
+

exp

✓
� i

2

1Z

�1

VI

◆
| i i . (15)

We are also calculating ‘scattering amplitudes’, but there
are two important di↵erences between out approach and
that based on the S-matrix. First, we calculate tran-
sitions between physical eigenstates of QED, for exam-
ple physical electrons, rather than between free parti-
cle states. Second, we calculate finite-time, rather than
asymptotic, transitions between such states. (Hence,
we need make no assumption about the asymptotic be-
haviour of the theory.)

A. Application: Nonlinear Compton Scattering

In this article we apply tBLFQ to the process of sin-
gle photon from an electron accelerated by a background
field. Taking the background to model an intense laser,
this process often goes by the name ‘nonlinear Compton
scattering’ [20–23]. An appropriate experimental setup
would see the (almost head on) collision of an electron
with the laser, and the subsequent measurement of either
the emitted photon [24] or electron [25] spectra.

We begin with an electron. At light-front time
x+=x+

0

=0 the background is switched on. The electron
is excited by the background and emits a photon. Af-
ter time �x+ the background field switches o↵ and we
return to ordinary QED, see Fig. 1. The natural ques-
tion to ask is how the quantum states of the electron and
(emitted) photon fields evolve with light-front time x+,
and this will indeed be studied below.

While, in principle, there is nothing to stop us includ-
ing arbitrarily complex background fields, as a first step
we consider a simple model. The background is turned

x+ = 0

x+

e�

e�

�

x+ = �x+x3

x0

Aµ(x�)

x�

FIG. 1. An illustration of nonlinear Compton scattering. An
electron enters a background (laser) field, is accelerated, and
emits a photon. After emission the electron can be further
accelerated until it leaves the field.

on only for finite light-front time �x+, during which it
has the following simple dependence on x�,

eA�(x�) = 2ma
0

cos (l�x�) (16)

= ma
0

⇥
exp (il�x�) + exp (�il�x�)

⇤
.

where e is the electron charge and m is the electron mass.
We have written out the exponential form of cosine to
highlight that the field both ‘pushes’ and ‘pulls’ parti-
cles in the longitudinal direction. This field has periodic
structure in the longitudinal direction with frequency l�
and dimensionless intensity parameter a

0

. (a
0

= 1 cor-
responds to an intensity of ⇠ 1018 W/cm2 at optical fre-
quency [3].) We compactify x� to a circle of length 2L,
and we write l� = ⇡

Lk
las

where k
las

is a natural number.
It is uniform in the transverse plane, as for plane waves,
but unlike plane waves is longitudinally polarised1.

The profile (16) is, when switched on, static in light-
front time but inhomogeneous in x�. In the lab frame it
describes a beam of finite duration

p
2�x+ propagating

along the x3 direction. Classically, such a field accelerates
charges in the x� (x3) direction as time x+ (x0) evolves.
The accelerated charges subsequently radiate, see Fig. 1,
and it is the quantum version of this radiation which we
will investigate below.

III. BLFQ

We are interested in the time-evolution of eigenstates
of the full QED Hamiltonian P�

QED, as induced by in-

1 It is common to model the focus of a laser field as, for example, a
time-dependent electric field. Such fields, like (16), do not obey
Maxwell’s equations in vacuum. While exact solutions do exist,
they are typically rather complex [26] (see, though, [27]), and
beyond the scope of this first treatment.



QED	
  in	
  background	
  EM	
  field	
  

•  Time	
  dependence	
  in	
  external	
  field	
  only	
  

	
  
•  In	
  interac9on	
  picture,	
  only	
  external	
  field	
  induces	
  
evolu9on	
  

•  Need	
  to	
  work	
  in	
  the	
  eigenstate	
  basis	
  of	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  
obtained	
  by	
  solving	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  BLFQ	
  

14	
  

P− (x+ ) = PQED
− +

= PQED
− +V (x+ )

i ∂
∂x+

ψ (x+ ) = 1
2
P− ψ (x+ )

PQED
−

PQED
− β = Pβ

− β

i ∂
∂x+

ψ (x+ )
I
= 1
2
VI (x

+ )ψ (x+ )
I

 
d 2∫ x⊥dx−ejµAµ (x

+ )



Eigenspectrum	
  of	
  QED	
  (Nf=1)	
  

0 2 4 6 8 10 12 14
0

2

4

6

8

Nmax=K-1ê2

in
va
ria
nt
m
as
s
HMe

V
L

15	
  

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

Nmax=K-1ê2
in
va
ria
nt
m
as
s
HMe

V
L

in
va
ria

nt
	
  m

as
s	
  (
M
eV

)	
  

in
va
ria

nt
	
  m

as
s	
  (
M
eV

)	
  
Nmax=K-­‐1/2	
   Nmax=K-­‐1/2	
  

•  Single	
  electron(bound	
  state)	
  +	
  eγ	
  sca$ering	
  states	
  (con9nuum)	
  
•  Larger	
  basis	
  covers	
  wider	
  QED	
  spectrum	
  	
  
•  Eigenstates	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  serve	
  as	
  basis	
  states	
  in	
  tBLFQ	
  

e + eγ

PQED
−



General	
  Procedure	
  for	
  tBLFQ	
  
1.  Derive	
  Lighhront-­‐Hamiltonian	
  from	
  Lagrangian	
  
2.  Switch	
  to	
  the	
  interac9on	
  picture	
  	
  
3.  Prepare	
  the	
  ini9al	
  (‘in’)	
  state	
  
4.  Evolve	
  the	
  ini9al	
  state	
  un9l	
  the	
  background	
  field	
  

subsides	
  
5.  Project	
  the	
  sca$ering	
  final	
  state	
  onto	
  ‘out’	
  states	
  

(constructed	
  out	
  of	
  QED	
  eigenstates)	
  and	
  obtain	
  S-­‐
matrix	
  element	
  	
  

16	
  

S = I outT + exp − i
2

VI
0

x f
+

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
in I



General	
  Procedure	
  for	
  tBLFQ	
  
1.  Derive	
  Lighhront-­‐Hamiltonian	
  from	
  Lagrangian	
  
2.  Switch	
  to	
  the	
  interac9on	
  picture	
  	
  
3.  Prepare	
  the	
  ini9al	
  (‘in’)	
  state:	
  
4.  Evolve	
  the	
  ini9al	
  state	
  un9l	
  the	
  background	
  field	
  

subsides	
  
5.  Project	
  the	
  sca$ering	
  final	
  state	
  onto	
  ‘out’	
  states	
  

(constructed	
  out	
  of	
  QED	
  eigenstates)	
  and	
  obtain	
  S-­‐
matrix	
  element	
  	
  

17	
  

a	
  single	
  physical	
  electron	
  	
  

 
S = I outT + exp − i

2
VI

0

x f
+

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
in I



General	
  Procedure	
  for	
  tBLFQ	
  
1.  Derive	
  Lighhront-­‐Hamiltonian	
  from	
  Lagrangian	
  
2.  Switch	
  to	
  the	
  interac9on	
  picture	
  	
  
3.  Prepare	
  the	
  ini9al	
  (‘in’)	
  state	
  
4.  Evolve	
  the	
  ini9al	
  state	
  un9l	
  the	
  background	
  field	
  

subsides	
  
5.  Project	
  the	
  sca$ering	
  final	
  state	
  onto	
  ‘out’	
  states	
  

(constructed	
  out	
  of	
  QED	
  eigenstates)	
  and	
  obtain	
  S-­‐
matrix	
  element	
  	
  

18	
  

 
S = I outT + exp − i

2
VI

0

x f
+

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
in I

 
= I out 1−

i
2VI (x

+ )δ x+( ) 1− i
2VI (x2

+ )δ x+( ) 1− i
2VI (x1

+ )δ x+( ) in I



General	
  Procedure	
  for	
  tBLFQ	
  
1.  Derive	
  Lighhront-­‐Hamiltonian	
  from	
  Lagrangian	
  
2.  Switch	
  to	
  the	
  interac9on	
  picture	
  	
  
3.  Prepare	
  the	
  ini9al	
  (‘in’)	
  state	
  
4.  Evolve	
  the	
  ini9al	
  state	
  un9l	
  the	
  background	
  field	
  

subsides	
  
5.  Project	
  the	
  sca$ering	
  final	
  state	
  onto	
  ‘out’	
  states	
  

(constructed	
  out	
  of	
  QED	
  eigenstates)	
  and	
  obtain	
  S-­‐
matrix	
  element	
  	
  

19	
  

 
S = I outT + exp − i

2
VI

0

x f
+

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
in I



13

!

! !!!!!!!!!!! !!" "" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""# ### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

K!1.5!

K!3.5"

K!5.5#

x
"
! 0 MeV#1

Nmax ! 8

! !!!!!!!!!!! !!"" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""# ### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1

0.2

0.3

p
ro

b
ab

il
it

y
!!

1
0
"

3
"

K#1.5!

K#3.5"

K#5.5#

x
$
# 0 MeV"1

Nmax # 8

!

! !!!!!!!!!!! !!

"

"" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""# ### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

x
!
" 0.2 MeV#1

Nmax " 8

! !!!!!!!!!!! !!"" "

"
"
""

"

" "
"
"
"
"""""""""""" """""""" " """"""""""

"
""" """""""""""""""""""""""" """"""" "

"
"""""""""" """""""
"
""""" "" """"
"

""" """""""""""" """""""""""""""""
"
"
"

### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1

0.2

0.3
p
ro

b
ab

il
it

y
!!

1
0
"

3
"

x
#
$ 0.2 MeV"1

Nmax $ 8

!

! !!!!!!!!!!! !!

"

"" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""

#

### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

x
!
" 0.4 MeV#1

Nmax " 8

! !!!!!!!!!!! !!
""
"

"

"

""

"

" "

"

"

"

""
"
""""
"
""""
"""""""" " """
"
""""
"
"

"

""" """
"
""""""""""""""
"
""""" """"""" "

"

"""""""""" """
"
"""
"
""""" "
"
""

"
"

"

""" """""""""""" """""""
""""
"
"""""

"

"

"

##
#

##

#

#

#

#

#

#### #
#
#
#
#####

#

####### ########### ##### #
#

## #### ## ## ##### #######
#
#### ########## ################# #### ### ######## ##### #

#
###### ##### #### #### ### ###
#
### ##### ## ##### ### #### #### #
#
#### ###### ######################## #### ################# ##### ##########

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

p
ro

b
ab

il
it

y
!!

1
0
"

3
"

x
#
$ 0.4 MeV"1

Nmax $ 8

!
! !!!!!!!!!!! !!

"

"" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""

#

### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

invariant mass MΒ !MeV"

p
ro

b
ab

il
it

y

x
" # 0.6 MeV$1

Nmax # 8

! !!!!!!!!!!! !!
"" "

"

"
""

"

" "

"

"

"

""
"
""""""""" """""""" " """"""""""
"
""" """
"
"""""""""""""""""""" """"""" "

"
""
"
""""""" """""""
"
""
""

" "" ""

"

"
"

""" """""""""""" """""""

"
"""

"

"""""

"

"

"

#

#
#

#
#

#

#

#

#

#

#### #

#

#

#

#####

#

#######
#

##

#

######
#
#
##

#
# #

#

## #### ## ## ##### #
#
#####

#

#### ##
#

##
#
####
#

#############
#
## #### ### ######## ##### #

#

###### ####

#

#### #### ### #

#

#

#

#

#

# ###
#

# ## ##### ### #### #### #

#

#### ###### ####
#################### #### ######
#
####
#
##### ##### ##########

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

invariant mass MΒ !MeV"

p
ro

b
ab

il
it

y
#"

1
0
#

3
$

x
$ % 0.6 MeV#1

Nmax % 8

FIG. 6. (Color online) Time evolution of the single electron system in the laser field. From top to bottom, the panels in
each row successively correspond to lightfront-time x

+=0, 0.2, 0.4, 0.6MeV�1 (the laser field is switched on at x

+=0). Each
dot on these plots stands for a tBLFQ basis state. Y-axis is the probability for the tBLFQ basis state |c

�

(x+)|2 and x-axis
is its corresponding invariant mass M

�

. The panels on the left (with y-axis up to 1.1) illustrate the evolution of the single
electron (ground) states in K=1.5, 3.5, 5.5 segments respectively and the panels on the right with y-axis “zoomed-in” show
the evolution of various electron-photon (excited) states. The electromagnetic coupling constant ↵=e

2

/(4⇡) is 1/137.

as a function of time. The increase of the invariant mass with time reflects the fact that energy is pumped into the

Results:	
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  state	
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  physical	
  electron	
  in	
  K=1.5	
  segment	
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FIG. 6. (Color online) Time evolution of the single electron system in the laser field. From top to bottom, the panels in each
row successively correspond to lightfront-time x

+=0, 0.2, 0.4, 0.6MeV�1 (the laser field is switched on at x

+=0). Each dot
on these plots stands for a tBLFQ basis state. Y-axis is the probability for the tBLFQ basis state |c

�

(x+)|2 and x-axis is its
corresponding invariant mass M . The panels on the left (with y-axis up to 1.1) illustrate the evolution of the single electron
(ground) states in K=1.5, 3.5, 5.5 segments respectively and the panels on the right with y-axis “zoomed-in” show the evolution
of various electron-photon (excited) states.

the probability of the electron to remain in its ground
state (K = 1.5) is further decreased, the probability of
it being accelerated (to K = 3.5) is increased, and that
the K = 5.5 single electron state becomes populated.
In the right hand panel, the electron-photon states in
the K = 5.5 segment also become populated as a result

of the second transitions. A second peak arises here at
the invariant mass of around 1 MeV (⇠

p
5.5 ⇥ m2

e/1.5),
distinct from that formed by the K = 3.5 electron-photon
states from the first transitions (at ⇠

p
3.5 ⇥ m2

e/1.5).
The peak location is highest in the K = 5.5 segment
simply because they follow from the initial state being

e + eγ
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FIG. 6. (Color online) Time evolution of the single electron system in the laser field. From top to bottom, the panels in
each row successively correspond to lightfront-time x

+=0, 0.2, 0.4, 0.6MeV�1 (the laser field is switched on at x

+=0). Each
dot on these plots stands for a tBLFQ basis state. Y-axis is the probability for the tBLFQ basis state |c

�

(x+)|2 and x-axis
is its corresponding invariant mass M

�

. The panels on the left (with y-axis up to 1.1) illustrate the evolution of the single
electron (ground) states in K=1.5, 3.5, 5.5 segments respectively and the panels on the right with y-axis “zoomed-in” show
the evolution of various electron-photon (excited) states. The electromagnetic coupling constant ↵=e

2

/(4⇡) is 1/137.

as a function of time. The increase of the invariant mass with time reflects the fact that energy is pumped into the

•  Accelera9on	
  and	
  radia9on	
  are	
  treated	
  in	
  the	
  same	
  Hilbert	
  space	
  
•  En9re	
  process	
  is	
  nonperturba9ve	
  (ini9al	
  state	
  changes	
  significantly)	
  

Results:	
  Nonlinear	
  Compton	
  Sca$ering	
  
single	
  e	
  states	
  in	
  K=1.5,3.5,5.5	
  segments	
   eγ	
  states	
  in	
  K=1.5,3.5,5.5	
  segments	
  

21	
  

invariant	
  mass	
  (MeV)	
   invariant	
  mass	
  (MeV)	
  

9m
e	
  
(x

+ )
	
  e
vo
lu
9o

n	
  
12

!

! !!!!!!!!!!! !!" "" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""# ### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

K!1.5!

K!3.5"

K!5.5#

x
"
! 0 MeV#1

! !!!!!!!!!!! !!"" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""# ### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1

0.2

0.3

0.4

0.5

p
ro

b
ab

il
it

y
!!

1
0
"

3
"

K#1.5!

K#3.5"

K#5.5#

x
$
# 0 MeV"1

!

! !!!!!!!!!!! !!

"

"" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""# ### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

x
!
" 0.2 MeV#1

! !!!!!!!!!!! !!"" "
"
"""

"

" "
"
"
"
"""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """""""""""""""""

"
"
"### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

0.5

p
ro

b
ab

il
it

y
!!

1
0
"

3
"

x
#
$ 0.2 MeV"1

!

! !!!!!!!!!!! !!

"

"" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""

#

### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### #### #### ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

x
!
" 0.4 MeV#1

! !!!!!!!!!!! !!
"" "

"

"
""

"

" "

"

"

"

""
"
""""""""" """""""" " """"""""
""
"
""" """
"
"""""""""""""""""""" """"""" "

"
"""""""""" """""""
"
""""" "" ""
"
"
"

""" """""""""""" """""""
""""
"
"""""

"

"

"
##

#
##

#

#

#

#

#

#### ###
#
#####

#

####### ########### ##### #### #### ## ## ##### #######
#
#### ########## ################# #### ### ######## ##### #

#
###### ##### #### #### ### ###
#
### ##### ## ##### ### #### #### #
#
#### ###### ######################## #### ################# ##### ##########

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

0.5

p
ro

b
ab

il
it

y
!!

1
0
"

3
"

x
#
$ 0.4 MeV"1

!
! !!!!!!!!!!! !!

"

"" "" """"" """""""""""""""" """""""" " """""""""""""" """""""""""""""""""""""" """"""" " """"""""""" """"""""""""" "" """""""" """""""""""" """"""""""""""""""""

#

### ########### ################# ########### ##### #### #### ## ## ##### ############ ########## ################# #### ### ######## ##### ######## ##### ######## ### ####### ##### ## ##### ### #### #### ###### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

invariant mass !MeV"

p
ro

b
ab

il
it

y

x
!
" 0.6 MeV#1

! !!!!!!!!!!! !!"" "

"
"
""

"

" "
"
"
"
"""""""""""" """""""" " """"""""""

"
""" """""""""""""""""""""""" """"""" "

"
""
"
""""""" """""""
"
"""
"

" "" ""
"
"
"

""" """""""""""" """""""
"
"""
"
"""""

"

"

"
#
#

#

#
#

#

#

#

#

#

#### #

#

#

#

#####

#

#######
#

##
#
######
# ###
## #
#

## #### ## ## ##### #
#
#####

#

#### ##########
#

#############
#
## #### ### ######## ##### #

#

###### ####
#

######## ### #
#

#

#

#
#

# ##### ## ##### ### #### #### #

#

#### ###### ######################## #### ################# ##### ##########
0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1

0.2

0.3

0.4

0.5

invariant mass !MeV"

p
ro

b
ab

il
it

y
#!

1
0
"

3
$

x
#
$ 0.6 MeV"1

FIG. 6. (Color online) Time evolution of the single electron system in the laser field. From top to bottom, the panels in each
row successively correspond to lightfront-time x

+=0, 0.2, 0.4, 0.6MeV�1 (the laser field is switched on at x

+=0). Each dot
on these plots stands for a tBLFQ basis state. Y-axis is the probability for the tBLFQ basis state |c

�

(x+)|2 and x-axis is its
corresponding invariant mass M . The panels on the left (with y-axis up to 1.1) illustrate the evolution of the single electron
(ground) states in K=1.5, 3.5, 5.5 segments respectively and the panels on the right with y-axis “zoomed-in” show the evolution
of various electron-photon (excited) states.

the probability of the electron to remain in its ground
state (K = 1.5) is further decreased, the probability of
it being accelerated (to K = 3.5) is increased, and that
the K = 5.5 single electron state becomes populated.
In the right hand panel, the electron-photon states in
the K = 5.5 segment also become populated as a result

of the second transitions. A second peak arises here at
the invariant mass of around 1 MeV (⇠

p
5.5 ⇥ m2

e/1.5),
distinct from that formed by the K = 3.5 electron-photon
states from the first transitions (at ⇠

p
3.5 ⇥ m2

e/1.5).
The peak location is highest in the K = 5.5 segment
simply because they follow from the initial state being

[Zhao,	
  	
  Ilderton,	
  Maris,	
  Vary	
  arXiv:	
  	
  1303:3273]	
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FIG. 7. (Color online) Time evolution of the average invariant
mass of the electron system calculated in tBLFQ basis space
with N

max

=8. Y-axis is the di↵erence between the average
invariant mass hMi of the system at x

+ and that of a single
electron m

e

. X-axis is the (lightfront) exposure time x+. The
electromagnetic coupling constant ↵=e

2

/(4⇡) is 1/137.

electron-photon system by the laser field. This invariant
mass can be accessed experimentally by measuring the
momenta of both the final electron, pµ

e , and photon, pµ
�

in an nCs experiment. The invariant mass can be com-
pared with the expectation value of (pµ

e + pµ
�)2 measured

over many repetitions of the nCs experiment. Work in
deriving other observables, such as the cross sections for
specific electron-photon final states, is in progress.

In this section we have demonstrated a) the general
procedure for treating processes nonperturbatively in
tBLFQ, and b) the accessibility of the full configuration
(wavefunction) of the system at finite time.

VI. CONCLUSIONS AND OUTLOOK

In this paper we constructed a nonperturbative frame-
work for time-dependent problems in quantum field the-
ory, referred to as time-dependent BLFQ (tBLFQ). This
framework is based on the previously developed Basis
Light-front Quantization (BLFQ) and adopts the light-
front Hamiltonian formalism. Given the Hamiltonian
and the initial configuration of a quantum field system as
input, the system’s subsequent evolution is evaluated by
solving the Schrödinger equation of light-front dynam-
ics. The eigenstates of the time-independent part of the
Hamiltonian, found by the BLFQ approach, provide the
basis for the time-evolution process. Basis truncation
and time-step discretization are the only approximations
in this fully nonperturbative approach. One feature of
the tBLFQ framework is that the complete wavefunction
of the quantum field system is accessible at any interme-
diate time during the evolution, which provides conve-
nience for detailed studies of time-dependent processes.

As an initial application we have applied this frame-
work to an external field problem. We have studied the

process in which an electron absorbs energy-momentum
from an intense background laser field, and emits a sin-
gle photon. In contrast to current numerical approaches
to strong laser physics, tBLFQ is fully quantum mechan-
ical and allows us to see both the acceleration of the
electron by the background and the creation of a pho-
ton, in real-time. Note that tBLFQ is also applicable to
problems without external fields but in which nontrivial
time-dependence arises from using an initial state which
is a non-stationary superposition of mass eigenstates.

Future developments will be made in two directions.
First, further improvement of tBLFQ itself. The ini-
tial step is to implement renormalization so that the
BLFQ representation of the physical eigenspectrum of
QED can be improved (and then used in tBLFQ cal-
culations). Currently we are working on implementing
a sector-dependent renormalization scheme within the
BLFQ framework. The inclusion of higher Fock sectors
in our calculation is also important, as it will not only
result in more realistic representations of quantum states
but will also allow for the description of a larger variety
of processes, e.g., multi-photon emissions.

The second direction to be pursued is the extension
of tBLFQ’s range of applications. In the field of intense
laser physics, the inclusion of transverse (x?), longitu-
dinal (x�) and time (x+) dependent structures to the
background field will be used to more realistically model
the focussed beams of next-generation laser facilities [29].
In addition to intense laser physics, we will also ap-
ply tBLFQ to relativistic heavy-ion physics, specifically
the study of particle production in the strong (color)-
electromagnetic fields of two colliding nuclei. Ultimately,
the goal is to use tBLFQ to address strong scattering
problems with hadrons in the initial and/or final states.
As supercomputing technology continues to evolve, we
envision that tBLFQ will become a powerful tool for ex-
ploring QCD dynamics.
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Appendix A: The light-front QED Hamiltonian

In this section we follow the derivation of the Hamilto-
nian in [3], but with an additional background field. The
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H.J. Pirner and J.P. Vary, 
Phys. Rev. C. 84, 015201(2011);  
arXiv: nucl-th/1008.4962  

Under what conditions do we require a quark-based  
description on nuclear structure? 

“Quark Percolation in Cold and Hot Nuclei” 

Spin content of the proton 
Nuclear form factors 
DIS on nuclei – Bjorken x > 1 
Nuclear Equation of State 
Probes with Q > 1 GeV/c 
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J.P. Vary, Proc. VII Int’l Seminar on High Energy Physics Problems,  
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•  Enumerate Fock-space basis subject to symmetry constraints 
•  Evaluate/renormalize/store H in that basis 
•  Diagonalize (Lanczos) 
•  Iterate previous two steps for sector-dep. renormalization 
•  Evaluate observables using eigenvectors (LF amplitudes) 
•  Repeat previous 4 steps for new regulator(s) 
•  Extrapolate to infinite matrix limit – remove all regulators 
•  Compare with experiment or predict new experimental results 
 

Steps to implement BLFQ 

Above achieved for QED test case – electron in a trap 
H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, 
Phys. Rev. Lett. 106, 061603 (2011) 
 
Improvements:  trap independence, (m,e) renormalization, . . . 
X. Zhao, H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, in prep’n 29	
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Discretized Light Cone Quantization (c1985)	



Basis Light Front Quantization*	



  

� 

φ
 
x ( ) = fα

 
x ( )aα

+ + fα
*  x ( )aα[ ]

α
∑

where aα{ } satisfy usual (anti-) commutation rules.

Furthermore, fα
 
x ( ) are arbitrary except for conditions :

                            fα
 
x ( ) fα '

*  x ( )d3x∫ = δαα '

                            fα
 
x ( ) fα

*  x '( )
α
∑ = δ 3  x −

 
x '( )

=> Wide range of choices for          and our initial choice is 	

  

� 

fa
 
x ( )

  

� 

fα
 x ( ) = Neik + x −

Ψn ,m (ρ,ϕ) = Neik + x −

fn ,m (ρ)χ m (ϕ)

Orthonormal:	


	



Complete:	



*J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath, G.F. de Teramond,  
P. Sternberg, E.G. Ng and C. Yang, PRC 81, 035205 (2010). ArXiv:0905:1411 
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2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a
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t = x0 → x+ ≡ x0 + x3

i ∂
∂x+

ψ (x+ ) = 1
2
P− ψ (x+ )

H = P0 → P− ≡ P0 − P3
Light	
  front	
  

[Dirac	
  1949]	
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•  Challenges	
  

–  Covariant	
  perturba9on	
  theory	
  calculates	
  S-­‐matrix	
  between	
  in-­‐	
  and	
  
out-­‐states	
  with	
  infinite	
  evolu9on	
  9me	
  in-­‐between	
  

–  Nontrivial	
  transform	
  between	
  results	
  in	
  BLFQ	
  basis	
  and	
  
momentum	
  basis	
  (oyen	
  used	
  in	
  perturba9ve	
  calcula9on):	
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  over	
  HO	
  wave	
  func9on	
  needed	
  
2.  Different	
  normaliza9on	
  for	
  basis	
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  Kronecker	
  delta	
  (BLFQ	
  basis)	
  vs.	
  Dirac	
  delta	
  (momentuem	
  basis)	
  
3.	
  	
  	
  	
  	
  Nmax	
  trunca9on	
  exclusive	
  for	
  BLFQ	
  basis	
  

•  Solu9on	
  -­‐-­‐	
  Lighhront	
  (LF)	
  perturba9on	
  theory	
  in	
  BLFQ	
  basis	
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  to	
  calculate	
  transi9on	
  amplitude	
  per	
  unit	
  9me	
  
–  Allows	
  for	
  comparison	
  with	
  nonpert.	
  calcula9on	
  on	
  the	
  level	
  of	
  
transi9on	
  matrix	
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  of	
  the	
  laser	
  field	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  eigenstates	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (adopt	
  the	
  interac9on	
  picture)	
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| ↵ i =

| e� i ⇠ | ke, me, ne, �e i ⌦ | k�, m�, n�, �� i
��
ke+k�=K etc

1 | e i ⇠ | ke, me, ne, �e i
��
ke=K etc

2

{K, Mj, Nf} {K, Mj, Nf}

| ephys i
��
k=K etc

1

2 Diagonalise

P �
QED

Diagonalise

P �
QED

{K �, M �
j, Nf} {K �, M �

j, Nf}

3

3

{K ��, M ��
j , Nf} {K ��, M ��

j , Nf}

= | � i

FIG. 2. The BLFQ and tBLFQ bases. On the left, the extended BLFQ basis |↵ i. This is a collection of bases in di↵erent
segments, each segment labelled by K, M

j

and N

f

. (Since nothing in our theory changes net fermion number, all segments
of interest have fixed N

f

= 1, in our case.) The states in each segment are bare states. Two such states, a bare electron and
a bare electron + a photon, are illustrated. The BLFQ procedure diagonalizes the Hamiltonian in each segment. The basis
states in |↵ i are then rearranged into eigenstates |� i of the QED Hamiltonian.

Numerical Scheme

A direct implementation of Eq. (31) leads to the so-
called Euler scheme which relates the state at x++�x+

to that at x+; this scheme is however not numerically
stable (since it is not symmetric in time) and the norm
of the state vector | ; x+ i increases as time evolves, see
Ref. [33]. We therefore adopt the second order di↵erence
scheme MSD2 [34], which is a symmetrized version of
the Euler scheme, which relating the state at x++�x+

to those at x+ and x+��x+ via

| ; x++�x+ iI

= | ; x+��x+ iI + (e�iV
I

�x+/2 � eiV
I

�x+/2)| ; x+ iI

⇡ | ; x+��x+ iI � iVI(x
+)�x+| ; x+ iI . (35)

It can be shown that the MSD2 scheme is stable, with the
norm of states conserved, provided that VI;max

�x+ < 1,
where VI;max

is the largest eigenvalue of VI [33]. This
requirement imposes an upper limit on the step size �x+.
Further limits on �x+ will be discussed below.

(Note that in order to provide su�cient initial con-
ditions for the MSD2 scheme, we use the standard Eu-
ler scheme to evolve the initial state one half-step for-
ward, generating | ; �x+/2 iI . Then we use the MSD2
scheme to evolve | ; �x+/2 iI an additional half-step
forward, generating | ; �x+ iI . With both | ; 0 iI and
| ; �x+ iI available the MSD2 scheme is ready to gener-
ate | ; x+ i at subsequent times, in time steps of �x+.)

This concludes our discussion of the principles behind,
and the method of application, of BLFQ and tBLFQ.
The reader interested in more details is referred to Ap-
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FIG. 4. (Color online) “Snapshots” of the system at x+ = 4.5
MeV�1 in bases of N

max

=8 (upper panel), 16 (middle panel)
and 24 (lower panel). Each dot on these plots corresponds
to a tBLFQ basis state � in K=3.5 segment. Y-axis is the
probability, |c

�

|2, for each basis state and x-axis is the cor-
responding invariant mass, M

�

. Green (red) dots are results
based on laser matrix element evaluated nonperturbatively
(perturbatively).

time. Initially the system is in the ground state of the
K=1.5 segment. The initial system is shown in the top
panel of Fig. 6; the only populated basis state is the sin-
gle electron (ground) state in the K = 1.5 segment. As
time evolves, the background causes transitions from the
ground state to states in the K = 3.5 segment. Both
the single electron state and electron-photon states are
populated; the former represent the acceleration of the
electron by the background, while the later represent the
process of radiation. At times x+ = 0.2 MeV�1, the sin-
gle electron state4 in K = 3.5 becomes populated while
the probability for finding the initial state begins to drop.

4 Because we neglect counter-terms, the single electron ground
states in the K = 1.5, 3.5 and 5.5 segments receive increas-
ing (negative) mass corrections from loop e↵ects. K works as an
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FIG. 5. (Color online) Time evolution of the invariant mass of
the electron system. Up, middle and lower panels are calcu-
lated in tBLFQ basis space with N

max

=8, 16, 24 respectively.
Y-axis is the di↵erence between the invariant mass M of the
system at x

+ and that of a single electron m

e

. X-axis is the
(lightfront) exposure time x

+. Green (red) dots are results
based on (non)perturbative laser matrix elements.

In the right hand panel, the populated electron-photon
states begin forming a peak structure. The location of
the peak is around the invariant mass of 0.8 MeV, roughly
consistent with the expected value of 0.780MeV, cf. the
discussion in Section V A.

Once the basis states in K = 3.5 become populated,
“second” transitions to the K = 5.5 segment become
possible. This can be seen in the third row of Fig. 6, at
x+ = 0.4 MeV�1. In the left hand panel, one sees that

ultraviolet and infrared regulator in the longitudinal direction
(see discussion in Sect. III B) and as a result, the face value for
the invariant mass of the K = 3.5 and K = 5.5 single electron
states is slightly lower than that for K = 1.5. In order to prevent
the invariant mass of the whole system being a↵ected by this ar-
tifact, we manually set the invariant mass for each K-segment
single electron state to the physical mass m

e

.
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Light-­‐front	
  vs	
  Equal-­‐9me	
  Quan9za9on	
  

i ∂
∂x+

ϕ(x+ ) = 1
2
P− ϕ(x+ )i ∂

∂t
ϕ(t) = H ϕ(t)

2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a
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[Dirac	
  1949]	
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  9me	
  dynamics	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  vs	
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Basis	
  Func9ons	
  for	
  Single	
  Par9cle	
  States	
  

•  Op9mal	
  basis	
  is	
  chosen	
  to	
  speed	
  up	
  numerical	
  calcula9on	
  
•  	
  	
  
•  Plane	
  wave	
  basis	
  for	
  longitudinal	
  direc9on:	
  
•  Harmonic	
  oscillator	
  basis	
  for	
  transverse	
  direc9on:	
  	
  

–  	
  	
  	
  	
  	
  	
  	
  	
  :	
  eigenstates	
  of	
  2D-­‐harmonic	
  oscillator	
  (HO)	
  of	
  frequency	
  ω	
  

•  	
  	
  

•  In	
  each	
  Fock	
  sector	
  we	
  truncate	
  states	
  with	
  total	
  HO	
  quantum	
  
number	
  beyond	
  Nmax	
  =	
  
–  Larger	
  Nmax	
  -­‐>	
  larger	
  basis	
  -­‐>	
  more	
  realis9c	
  results	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐>	
  numerically	
  more	
  expensive	
  

e;  p+, p⊥ = e;  p+ ⊗ e;  p⊥

e;  p+ ~ exp(ip+x− )

e;  p⊥ ~ e;  n,m

n,m

e;  pe
+, pe

⊥ → e;  pe
+,ne,me

eγ;  pe
+, pe

⊥, pγ
+, pγ

⊥ → eγ;  pe
+,ne,me, pγ

+,nγ ,mγ



[Vary	
  et	
  al	
  ’10,	
  Honkanen	
  et	
  al	
  ‘11]	
  

(2nii∑ + mi +1)



Outline	
  for	
  BLFQ	
  approach	
  
•  Set	
  up	
  Hilbert	
  space	
  by	
  Fock	
  space	
  expansion:	
  

	
  
	
  

•  Calculate	
  the	
  Hamiltonian	
  matrix	
  in	
  the	
  Fock	
  Space:	
  	
  
	
  
–  T:	
  Kine9c	
  energy	
  term	
  for	
  each	
  par9cle	
  in	
  each	
  Fock	
  sector	
  
–  V:	
  Interac9on	
  term	
  coupling	
  different	
  states	
  (and	
  different	
  sectors)	
  
	
  	
  	
  	
  	
  E.g.,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  See	
  Young	
  Li’s	
  talk	
  for	
  more	
  details	
  
	
  

•  Diagonalize	
  H	
  and	
  obtain	
  eigenvalues	
  and	
  eigenstates	
  
•  Extract	
  observables	
  from	
  the	
  eigenstates:	
  	
  

	
  

|ephysical 〉=a|e〉+b|eγ 〉!+c |eγγ 〉+d |eγee 〉+…

H = T +V
i H j

O ≡ ephysical Ô ephysical

ephysical

is	
  the	
  quantum	
  operator	
  	
  for	
  O	
  Ô



QED & QCD	



QCD	



Elementary vertices in LF gauge	
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•  A	
  numerical	
  non-­‐perturba9ve	
  approach	
  for	
  9me-­‐dependent	
  
problems	
  in	
  quantum	
  field	
  theory	
  

•  Solves	
  the	
  generalized	
  wave-­‐equa9on	
  for	
  9me-­‐evolu9on	
  of	
  
quantum	
  field	
  configura9ons	
  

	
  
	
  
	
  
	
  
	
  

•  Works	
  in	
  the	
  interac9on	
  picture:	
  	
  
•  Typical	
  applica9ons:	
  strong	
  field	
  laser	
  physics,	
  heavy-­‐ion	
  physics…	
  	
  

Time-­‐dependent	
  Basis	
  Light-­‐front	
  Quan9za9on	
  

i ∂
∂x+

ϕ(x+ ) = P+ ϕ(x
+ )

 P+
0 Φi = P+

0,i Φi
i ∂
∂x+

ϕ(x+ )
I
=VI ϕ(x

+ )
I

ϕ(x+ )

BLFQ	
   tBLFQ	
  

Provide	
  basis	
  

P+(x
+ ) = P+

0 +V (x+ )

Generalized	
  wave-­‐eq.	
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Solving	
  Nonlinear	
  Compton	
  Sca$ering	
  in	
  tBLFQ	
  

1.  Write	
  down	
  the	
  Hamiltonian	
  P+:	
  
	
  
2.  Solve	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  the	
  tBLFQ	
  basis	
  	
  
3.  Prepare	
  ini9al	
  state	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
-  physical	
  electron:	
  the	
  ground	
  state	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  nf=1	
  

4.  Calculate	
  matrix	
  elements	
  for	
  VLAS	
  

5	
  .	
  	
  Solve	
  for	
  the	
  generalized	
  wave-­‐equa9on	
  numerically	
  

	
  
	
  

ϕ(0)

  
Φ j V LAS (x+ ) Φi I

= ei( P+
j−P+

i )x+ Φ j V LAS (x+ ) Φi

P+
QED

  P+ (x+ ) = P+
QED +V LAS (x+ )

i ∂
∂x+

Φi ϕ(x
+ )

I
= Φi V

LAS Φ j I
Φ j ϕ(x

+ )
I

j
∑

 P+
QED Φi = P+

i Φi Φi
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Ψ(x+ )
I
=U(x+ ,0) Ψ(0) I = T exp −i VI

L (x+ ')dx+ '
0

x+

∫⎛
⎝⎜

⎞
⎠⎟ Ψ(0) I

→ (1− iVI
L (x+ )Δx+ )(1− iVI

L (x2
+ )Δx+ )(1− iVI

L (x1
+ )Δx+ ) Ψ(0) I



	
  4.	
  Sandwich	
  	
  	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  keep	
  terms	
  of	
  leading	
  order	
  in	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  :	
  
	
  

Nonpert.	
  Vs	
  Pert.	
  Laser	
  Matrix	
  Element	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  Nonperturba9ve	
  evalua9on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Perturba9ve	
  evalua9on	
  

' |LVΨ Ψ

	
  1.	
  Diagonalize	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  BLFQ	
  basis	
  	
  
	
  2.	
  Compute	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  BLFQ	
  basis	
  
	
  3.	
  Sandwich	
  	
  	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  obtain	
  	
  
	
  

| 'Ψ |ΨQEDP+ 1.  Diagonalize	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  BLFQ	
  basis	
  
2.  Convert	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  momentum	
  basis	
  
3.  Evaluate	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  LF	
  

perturba9on	
  theory	
  

These	
  calcula9ons	
  are	
  actually	
  done	
  in	
  
momentum	
  basis	
  (no	
  basis	
  trunca9on).	
  
	
  

kineticP+ 0| 'Ψ 0|Ψ
LV
LV | 'Ψ |Ψ

' |L
nonpert

VΨ Ψ =

0| 'Ψ 0|Ψ

| 'Ψ |Ψ
0| 'Ψ 0|Ψ

0
0

1| ' 1 | '
' 0

Q
kinetic V
P iε +

⎛ ⎞
Ψ = + Ψ⎜ ⎟− +⎝ ⎠

0
0

1| 1 |
0

Q
kinetic V
P iε +

⎛ ⎞
Ψ = + Ψ⎜ ⎟− +⎝ ⎠

LV | 'Ψ |Ψ LV QV
*

0 0 0 0
0 0

1 1' | ' | ' |
' 0 0

L Q L L Q
kinetic kineticpert

V V V V V
P i P iε ε+ +

Ψ Ψ = Ψ Ψ + Ψ Ψ
− + − +

+=
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Evolu9on	
  of	
  Invariant	
  Mass	
  of	
  the	
  System	
  

•  Invariant	
  mass	
  increases	
  with	
  9me	
  as	
  laser	
  field	
  “pumps”	
  
energy	
  in	
  

•  As	
  Nmax	
  increases	
  be$er	
  agreements	
  are	
  achieved	
  between	
  
calcula9ons	
  based	
  on	
  laser	
  matrix	
  elements	
  from	
  LF.	
  pert.	
  and	
  
nonpert.	
  methods,	
  intermediate	
  trunca9on	
  effects	
  are	
  
removed	
  gradually	
  in	
  the	
  nonperturba9ve	
  case	
  

•  Quasi-­‐linear	
  dependence	
  on	
  x+	
  is	
  expected	
  in	
  the	
  perturba9ve	
  
regime	
  

Nmax=8	
   Nmax=16	
   Nmax=24	
  

0
1 , 0.5

13700 ea mα = =
0

1 , 0.5
13700 ea mα = = 0

1 , 0.5
13700 ea mα = =
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Evolu9on	
  of	
  Excited	
  States	
  for	
  Nmax=24	
  

	
  
•  Evolu9on	
  of	
  all	
  excited	
  states	
  in	
  the	
  basis	
  are	
  tracked	
  
•  Excited	
  states	
  are	
  being	
  populated	
  as	
  9me	
  increases	
  

–  Decent	
  agreement	
  between	
  nonpert.	
  and	
  lf.	
  pert.	
  laser	
  matrix	
  elements	
  

•  Peak	
  structure	
  emerges	
  for	
  transi9ons	
  conserving	
  energy	
  
–  Only	
  transi9ons	
  conserving	
  (light-­‐front)	
  energy	
  keep	
  increasing	
  with	
  9me	
  
–  Transi9ons	
  not	
  conserving	
  (light-­‐front)	
  energy	
  oscillate	
  with	
  9me	
  
–  Peak	
  loca9on	
  agrees	
  with	
  covariant	
  perturba9on	
  theory	
  
–  Peak	
  width	
  consistent	
  with	
  energy-­‐9me	
  uncertainty	
  principle	
  

x+=10MeV-­‐1	
   x+=40MeV-­‐1	
   x+=80MeV-­‐1	
  

0
1 , 0.5

13700 ea mα = = 0
1 , 0.5

13700 ea mα = =
0

1 , 0.5
13700 ea mα = =
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Applica9on	
  to	
  Sca$ering	
  Process	
  

•  S-­‐matrix	
  

1.  Construct	
  “in”	
  state	
  out	
  of	
  QED	
  eigenstates	
  and	
  use	
  
as	
  ini9al	
  state	
  

2.  Evolve	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  un9l	
  the	
  background	
  field	
  subsides	
  at	
  	
  	
  	
  	
  	
  
and	
  obtain	
  the	
  sca$ering	
  final	
  state	
  	
  

3.  Project	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  onto	
  “out”	
  states	
  (constructed	
  out	
  of	
  
QED	
  eigenstates)	
  and	
  obtain	
  S-­‐matrix	
  element	
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3

of P�
QED, | � i.

S = Ih out |T
+

exp

✓
� i

2

x+
fZ

0

VI

◆
| in iI . (14)

Similar to ‘in’ states, ‘out’ states are also superposition
of physical particles and can thus be constructed out of
the eigenstates of P�

QED, | � i.
[Combine red and blue text into something short and

sexy: comparison between what we do and what is nor-
mally done, in pert. theory.]

Let us compare this approach to the usual scattering
approach in perturbation theory. There, the initial state
would be an asymptotic state, describing free particles at
x+ = �1, under the usual assumption that the coupling
switches o↵ at large times. This ‘in’ state, | i i would be
evolved through all time, from the infinite past to the in-
finite future. The evolved state would then be projected
onto a second free particle state, the ‘out’ state | f i, to
obtain an S-matrix element Sfi = h f |S| i i, with

Sfi = h f |T
+

exp

✓
� i

2

1Z

�1

VI

◆
| i i . (15)

We are also calculating ‘scattering amplitudes’, but there
are two important di↵erences between out approach and
that based on the S-matrix. First, we calculate tran-
sitions between physical eigenstates of QED, for exam-
ple physical electrons, rather than between free parti-
cle states. Second, we calculate finite-time, rather than
asymptotic, transitions between such states. (Hence,
we need make no assumption about the asymptotic be-
haviour of the theory.)

A. Application: Nonlinear Compton Scattering

In this article we apply tBLFQ to the process of sin-
gle photon from an electron accelerated by a background
field. Taking the background to model an intense laser,
this process often goes by the name ‘nonlinear Compton
scattering’ [20–23]. An appropriate experimental setup
would see the (almost head on) collision of an electron
with the laser, and the subsequent measurement of either
the emitted photon [24] or electron [25] spectra.

We begin with an electron. At light-front time
x+=x+

0

=0 the background is switched on. The electron
is excited by the background and emits a photon. Af-
ter time �x+ the background field switches o↵ and we
return to ordinary QED, see Fig. 1. The natural ques-
tion to ask is how the quantum states of the electron and
(emitted) photon fields evolve with light-front time x+,
and this will indeed be studied below.

While, in principle, there is nothing to stop us includ-
ing arbitrarily complex background fields, as a first step
we consider a simple model. The background is turned

x+ = 0

x+

e�

e�

�

x+ = �x+x3

x0

Aµ(x�)

x�

FIG. 1. An illustration of nonlinear Compton scattering. An
electron enters a background (laser) field, is accelerated, and
emits a photon. After emission the electron can be further
accelerated until it leaves the field.

on only for finite light-front time �x+, during which it
has the following simple dependence on x�,

eA�(x�) = 2ma
0

cos (l�x�) (16)

= ma
0

⇥
exp (il�x�) + exp (�il�x�)

⇤
.

where e is the electron charge and m is the electron mass.
We have written out the exponential form of cosine to
highlight that the field both ‘pushes’ and ‘pulls’ parti-
cles in the longitudinal direction. This field has periodic
structure in the longitudinal direction with frequency l�
and dimensionless intensity parameter a

0

. (a
0

= 1 cor-
responds to an intensity of ⇠ 1018 W/cm2 at optical fre-
quency [3].) We compactify x� to a circle of length 2L,
and we write l� = ⇡

Lk
las

where k
las

is a natural number.
It is uniform in the transverse plane, as for plane waves,
but unlike plane waves is longitudinally polarised1.

The profile (16) is, when switched on, static in light-
front time but inhomogeneous in x�. In the lab frame it
describes a beam of finite duration

p
2�x+ propagating

along the x3 direction. Classically, such a field accelerates
charges in the x� (x3) direction as time x+ (x0) evolves.
The accelerated charges subsequently radiate, see Fig. 1,
and it is the quantum version of this radiation which we
will investigate below.

III. BLFQ

We are interested in the time-evolution of eigenstates
of the full QED Hamiltonian P�

QED, as induced by in-

1 It is common to model the focus of a laser field as, for example, a
time-dependent electric field. Such fields, like (16), do not obey
Maxwell’s equations in vacuum. While exact solutions do exist,
they are typically rather complex [26] (see, though, [27]), and
beyond the scope of this first treatment.

ψ (0) I = in I

ψ (0) x f
+

ψ (x f
+ )

ψ (x f
+ )



Example:	
  Obtain	
  LF	
  QED	
  Hamiltonian	
  

•  QED	
  Lagrangian	
  
•  Derived	
  Light-­‐front	
  Hamiltonian	
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14

dition to intense laser physics, we will also apply tBLFQ
to relativistic heavy-ion physics, specifically the study of
particle production in the strong (color)-electromagnetic
fields of two colliding nuclei. Ultimately, the goal is to
use tBLFQ to address strong scattering problems with
hadrons in the initial and/or final states. As super-
computing technology continues to evolve, we envision
that tBLFQ will become a powerful tool for exploring
QCD dynamics.
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Appendix A: The light-front QED Hamiltonian

In this section we follow the derivation of the Hamil-
tonian in [18], but with an additional background field.
The Lagrangian is

L = �1

4
Fµ⌫Fµ⌫ +  ̄(i�µDµ � me) , (A1)

in which Dµ ⌘ @µ + ieCµ and Cµ = Aµ + Aµ is the sum
of the background and quantum gauge fields respectively.
Note that Fµ⌫ is calculated from Aµ alone, i.e. there is
no kinetic term for the background, which is fixed. The
equations of motion for the fields are

@µFµ⌫ = e ̄�⌫ =: ej⌫ , (A2)

which defines the current j⌫ , and
⇥
i�µDµ � me

⇤
 = 0 . (A3)

The background field appears in the equations of motion
for the fermion, but not for the gauge field. We now
analyze these equations in light-front coordinates (x± =
x0 ± x3, and x± = 2x

⌥

). We work in light-front gauge,
so that A+ = A+ = 0. The ⌫ = + component of (A2)
does not contain time derivatives, and can be written

1

2
A� =

@?A?

@+
� e

j+

(@+)2
. (A4)

This is a constraint equation which relates the (non-
dynamical) field A� to the transverse components A?

and the fermion current. Similarly, if we multiply (A3)
by �+ on the left, we find a constraint equation for the
fermion field. Defining first the orthogonal field compo-
nents

 � ⌘ 1

4

�+�� ,  + ⌘ 1

4

���+ , (A5)

the constraint equation may be written

 � =
1

2i@+

⇥
me � i�?D?

⇤
�+ + , (A6)

Hence, the field  � is non-dynamical and can be ex-
pressed in terms of the dynamical field  +. We now turn
to the construction of the Hamiltonian. The conjugate
momenta are

@L
@@+ 

= i ̄�+ ,
@L

@@+Aµ
= Fµ+ (A7)

and the Hamiltonian P� = 2P+ is then

P� =

Z
d2x?dx� Fµ+@

+

Aµ + i ̄�+@+ � L

=

Z
d2x?dx� Fµ+@

+

Aµ +
1

4
Fµ⌫Fµ⌫ + i ̄�+@+ ,

(A8)

in which the first line is the standard Legendre transfor-
mation, and in the second line we have used the equations
of motion. It is convenient to add a total derivative to
the Hamiltonian [18], the term �@µ(Fµ+A+), and again
use the equations of motion to write

P� =

Z
d2x?dx� 1

4
Fµ⌫Fµ⌫ � Fµ+Fµ+

+ i ̄�+D+ + e ̄�+A+ .
(A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time deriva-
tives of the fields in favour of the fields themselves, and
their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj

@+
, Aj} . (A10)

The first line of (A9) then becomes

1

4
F ijFij � 1

2
F+�F

+�

=
1

2
Ãj(i@?)2Ãj +

e2

2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †

+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
1

i@+
[me + i�?D?] + .

(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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Appendix A: The light-front QED Hamiltonian

In this section we follow the derivation of the Hamil-
tonian in [18], but with an additional background field.
The Lagrangian is

L = �1

4
Fµ⌫Fµ⌫ +  ̄(i�µDµ � me) , (A1)

in which Dµ ⌘ @µ + ieCµ and Cµ = Aµ + Aµ is the sum
of the background and quantum gauge fields respectively.
Note that Fµ⌫ is calculated from Aµ alone, i.e. there is
no kinetic term for the background, which is fixed. The
equations of motion for the fields are

@µFµ⌫ = e ̄�⌫ =: ej⌫ , (A2)

which defines the current j⌫ , and
⇥
i�µDµ � me

⇤
 = 0 . (A3)

The background field appears in the equations of motion
for the fermion, but not for the gauge field. We now
analyze these equations in light-front coordinates (x± =
x0 ± x3, and x± = 2x

⌥

). We work in light-front gauge,
so that A+ = A+ = 0. The ⌫ = + component of (A2)
does not contain time derivatives, and can be written

1

2
A� =

@?A?

@+
� e

j+

(@+)2
. (A4)

This is a constraint equation which relates the (non-
dynamical) field A� to the transverse components A?

and the fermion current. Similarly, if we multiply (A3)
by �+ on the left, we find a constraint equation for the
fermion field. Defining first the orthogonal field compo-
nents

 � ⌘ 1

4

�+�� ,  + ⌘ 1

4

���+ , (A5)

the constraint equation may be written

 � =
1

2i@+

⇥
me � i�?D?

⇤
�+ + , (A6)

Hence, the field  � is non-dynamical and can be ex-
pressed in terms of the dynamical field  +. We now turn
to the construction of the Hamiltonian. The conjugate
momenta are

@L
@@+ 

= i ̄�+ ,
@L

@@+Aµ
= Fµ+ (A7)

and the Hamiltonian P� = 2P+ is then

P� =

Z
d2x?dx� Fµ+@

+

Aµ + i ̄�+@+ � L

=

Z
d2x?dx� Fµ+@

+

Aµ +
1

4
Fµ⌫Fµ⌫ + i ̄�+@+ ,

(A8)

in which the first line is the standard Legendre transfor-
mation, and in the second line we have used the equations
of motion. It is convenient to add a total derivative to
the Hamiltonian [18], the term �@µ(Fµ+A+), and again
use the equations of motion to write

P� =

Z
d2x?dx� 1

4
Fµ⌫Fµ⌫ � Fµ+Fµ+

+ i ̄�+D+ + e ̄�+A+ .
(A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time deriva-
tives of the fields in favour of the fields themselves, and
their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj

@+
, Aj} . (A10)

The first line of (A9) then becomes

1

4
F ijFij � 1

2
F+�F

+�

=
1

2
Ãj(i@?)2Ãj +

e2

2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †

+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
1

i@+
[me + i�?D?] + .

(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †

+[me�i�?@?]
1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †

+[e�?C?]
1

i@+
[me + i�?@?] +

+ †

+[me � i�?@?]
1

i@+
[�e�?C?] +

=
1

2
 ̃†
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using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are
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Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that
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Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =
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The first line is the QED light-front Hamiltonian, P�

QED

.
The second line contains the new terms generated by the
background field. We label the terms in P�

QED

as Tf , T� ,
W

1

. . . W
3

respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W

1

is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W

2

is the instantaneous-photon interaction and
W

3

is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †

+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W

2

and W
3

, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P

�

QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�

QED

, are
listed below.
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taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
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background, 2-fermion vertex, and two, instantaneous,
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(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being
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As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
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and W
3

, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †
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1
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[me+i�?@?] + =
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(A15)

Next, we have terms in (A12) which are linear in C.
These are
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using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
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(A19)

The first line is the QED light-front Hamiltonian, P�

QED

.
The second line contains the new terms generated by the
background field. We label the terms in P�

QED

as Tf , T� ,
W

1

. . . W
3

respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W

1

is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W

2

is the instantaneous-photon interaction and
W

3

is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †

+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W

2

and W
3

, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P

�

QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�

QED

, are
listed below.
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †

+[me�i�?@?]
1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †

+[e�?C?]
1

i@+
[me + i�?@?] +

+ †

+[me � i�?@?]
1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�

QED

.
The second line contains the new terms generated by the
background field. We label the terms in P�

QED

as Tf , T� ,
W

1

. . . W
3

respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W

1

is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W

2

is the instantaneous-photon interaction and
W

3

is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †

+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W

2

and W
3

, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P

�

QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�

QED

, are
listed below.

= PQED
− +V
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a0

eA− (x− ) = mea0 cos l−x
−( )

A+ = 0

 F
+−

A−
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  Light-­‐front	
  Quan9za9on	
  

•  BLFQ:	
  approach	
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  field	
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–  nonperturba9ve	
  	
  

•  for	
  systems	
  with	
  strong	
  interac9on	
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  strong	
  background	
  field	
  

–  first-­‐principles	
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  first-­‐principles	
  /	
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  Hamiltonian	
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– Hamiltonian	
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•  direct	
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  bound	
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  wavefunc9on	
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  vacuum	
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  free	
  Hamiltonian	
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  of	
  wavefunc9on	
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i ∂
∂x+

ϕ(x+ ) = 1
2
P− ϕ(x+ )i ∂

∂t
ϕ(t) = H ϕ(t)

2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a
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H = P0 P− = P0 − P3

t ≡ x0 t ≡ x+ = x0 + x3
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P0 = m2 +

P2

P− = m
2 + P⊥

2

P+
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P− β = Pβ
− β

O ≡ β Ô β

α ' P− α

α
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Discretized Light Cone Quantization (c1985)	



Basis Light Front Quantization*	



  

� 

φ
 
x ( ) = fα

 
x ( )aα

+ + fα
*  x ( )aα[ ]

α
∑

where aα{ } satisfy usual (anti-) commutation rules.

Furthermore, fα
 
x ( ) are arbitrary except for conditions :

                            fα
 
x ( ) fα '

*  x ( )d3x∫ = δαα '

                            fα
 
x ( ) fα

*  x '( )
α
∑ = δ 3  x −

 
x '( )

=> Wide range of choices for          and our initial choice is 	

  

� 

fa
 
x ( )

  

� 

fα
 x ( ) = Neik + x −

Ψn ,m (ρ,ϕ) = Neik + x −

fn ,m (ρ)χ m (ϕ)

Orthonormal:	


	



Complete:	



*J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath, G.F. de Teramond,  
P. Sternberg, E.G. Ng and C. Yang, PRC 81, 035205 (2010). ArXiv:0905:1411 
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Basis	
  Construc9on	
  

•  Basis	
  is	
  chosen	
  to	
  reflect	
  the	
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5

for employing the 2D HO states as single particle basis
states in the transverse plane.)

We present only that which is necessary in order to
follow our method; more details of the basis states may be
found in Appendix B. We note here that our basis states
depend only on the combination b :=

p
M⌦ (and not on

M and ⌦ individually). This is a free parameter which
must be chosen. Since our goal is to design a basis which
matches as closely as possible the symmetries of the QED
Hamiltonian, we note that there is only one mass scale
in QED, and that is the physical electron mass m. A
sensible choice for our 2D-HO parameter is therefore3

b = m, and we adopt this from here on.
Now, to see why this choice of basis is suited to

light-front problems, we now state how the single par-
ticle quantum numbers {�, k, n, m} relate to the segment
numbers of the states ↵. So, consider a multi-particle
state | ↵ i = ⌦| ↵̄ i, which belongs to a particular segment
and is an eigenvector of J3, P+ and Q with eigenvalues
Mj , K and Nf , respectively. If �l, kl, ml and nf,l are
the quantum numbers for, respectively, the helicity, lon-
gitudinal momentum, longitudinal projection of angular
momentum, and net fermion number of the lth particle
in the state then, summing over particles l, we have

X

l

kl = K ,
X

l

nf,l = Nf , (22)

X

l

ml =: Mt

X

l

�l =: S , (23)

Mj = Mt + S . (24)

(The single particle net fermion number nf is defined 1
for e, -1 for ē and 0 for �.) We see that the basis states
| ↵ i are eigenstates of J3

o and J3

i individually, with eigen-
values Mt and S. Note, though, that it is the sum Mj

which is conserved by the light-front QED Hamiltonian.
While each basis state belongs to one and only one

sector, it is clear that the basis states themselves are
not eigenstates of QED. These must still be constructed
by diagonalizing P�

QED in this basis. For example, the
physical electron eigenstate |e

phys

i can be expanded as,

| e
phys

i =
X

↵

| ↵ ih ↵ | e
phys

i . (25)

in which both the eigenstate on the left and the basis
states on the right all belong to the same segment. Di-
agonalizing the Hamiltonian in our basis would yield the
coe�cients h ↵ | physi, and hence the physical states. In

3 In Fock sectors with n particles the e↵ective 2D-HO parame-
ter for the center-of-mass motion is bcm

n

=
p
nM⌦ = b

p
n, i.e.,p

n times of that for single-particle states. Thus, in order to
match the center-of-mass motion across di↵erent sectors as re-
quired by QED vertices, we adopt sector-dependent 2D-HO pa-
rameters b

n

= b/
p
n for Fock sectors with n particles, where

b = m
e

is the 2D-HO parameter in the one particle sector.

order to do this, though we need to be able to implement
our basis numerically, which requires some truncation.
We turn to this now.

B. Basis reduction

Since a quantum field theory contains an infinite num-
ber of degrees of freedom, reduction of the basis space is
necessary in order for numerical calculations to be feasi-
ble. For us, this reduction takes place both in the basis
used and in Fock space.

The first type of reduction is called “pruning”, in which
we exclude basis states which are not needed for desired
observables. The pruning process is lossless, in that it
does not lead to loss of accuracy in the desired observ-
ables. For example, in bound state problems, one is
typically interested in states with definite Nf and Mj .
Combining this with the longitudinal boost invariance in-
herent to light-front dynamics, one can choose K based
on the desired “resolution” for the longitudinal momen-
tum partition among the basis particles [[Refs]]. Thus,
one only needs to work in a single segment of the QED
eigenspace, neglecting the others, without loss of infor-
mation. From here on we write “BLFQ basis” to mean
the basis of a single segment.

Pruning alone is not enough to reduce the basis space
to finite dimension, however, since even a single segment
contains an infinite number of degrees of freedom. To
further reduce the basis dimensionality we need to per-
form basis truncation, which unavoidably causes loss of
accuracy in calculating observables. Basis truncation is
implemented at two levels.

i) Fock-sector truncation. Consider the physical elec-
tron state. This has components in all Fock-sectors with
Nf = 1, which we write schematically as

|ephysi = a|ei + b|e�i + c|e��i + d|eeēi + . . . . (26)

Included in this series are, for example, the bare elec-
tron | e i and its photon-cloud dressing, | e� i, | e�� i etc.
Together, the bare fermion and its cloud of virtual par-
ticles comprise the observable, gauge invariant electron,
as originally described by Dirac [36, 37].

We implement basis truncation by assuming that
higher Fock-sectors give (with an appropriate renormal-
ization procedure implemented) decreasing contributions
for the low-lying eigenstates in which we are mostly inter-
ested. (One motivation for this is the success of pertur-
bation theory in QED). In this first paper, we make the
simplest possible nontrivial truncation, which is to trun-
cate our Fock-sectors to | e i and | e� i. Thus, in this trun-
cated basis, the physical electron state would be given by
only the first two terms of (26). This is enough to calcu-
late physical wavefunctions accurate up to the first-order
of the electromagnetic coupling ↵.

ii) Truncation within Fock-sectors. Fock-sector trun-
cation is still not enough to reducing the basis to finite
dimension; each Fock particle has an infinite number of

eγ = e ⊗ γ

e = {ne,me,ke,λ e} γ = {nγ ,mγ ,kγ ,λγ }

x− = x0 − x3

x⊥ = x1,2

b = MΩ
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m=0	

 m=1	

 m=2	



m=3	

 m=4	



J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath,  
G.F. de Teramond, P. Sternberg, E.G. Ng and C. Yang, PRC 81, 035205 (2010).  
ArXiv:0905:1411 
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  of	
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ki
i
∑ = K

•  Trunca9on:	
  
-­‐	
  Fock	
  sector	
  trunca9on	
  

-­‐	
  net	
  fermion	
  number:	
  

-­‐	
  total	
  longitudinal	
  angular	
  momentum:	
  	
  

-­‐	
  longitudinal	
  momentum:	
  

-­‐	
  longitudinal	
  periodic	
  boundary	
  condi9on	
  
	
  	
  	
  (integer	
  or	
  half	
  integer	
  ki)	
  

2ni+ |mi | +1[ ]≤ Nmax
i
∑-­‐	
  “Nmax”	
  trunca9on	
  in	
  the	
  transverse	
  

direc9ons	
  	
  

n f
i

i
∑ = N f

(mi
i
∑ + si ) = Jz

ki
i
∑ = K

-­‐	
  global	
  color	
  singlets	
  (QCD)	
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α
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α ' P− α
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  (MeV)	
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•  Eigenspectrum	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  (Nf=1)	
  in	
  the	
  small	
  basis	
  :	
  

•  Bound	
  states	
  and	
  sca$ering	
  states	
  are	
  obtained	
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e phys
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Pβ
− Mβ

e β eγ β

PQED
−



Remove	
  Center-­‐of-­‐Mass	
  Mo9on	
  

•  Center-­‐of-­‐mass	
  (cm)	
  mo9on	
  introduces	
  mul9ple	
  
spurious	
  copies	
  of	
  intrinsic	
  eigenspectrum	
  

•  Introducing	
  a	
  Lagrangian	
  mul9plier	
  term	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  shiy	
  up	
  copies	
  with	
  excited	
  cm	
  mo9on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

–  requires	
  exact	
  factoriza9on	
  between	
  intrinsic	
  and	
  
cm	
  mo9on	
  

– achieved	
  by	
  Nmax	
  trunca9on	
  in	
  the	
  2D-­‐HO	
  basis	
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ΛPcm
− P−



Renormaliza9on	
  in	
  BLFQ	
  
•  Renormaliza9on	
  necessary	
  for	
  obtaining	
  physical	
  
results	
  	
  
– need	
  both	
  mass	
  and	
  charge	
  renormaliza9on	
  

•  Renormaliza9on	
  in	
  BLFQ	
  is	
  different	
  from	
  that	
  in	
  
perturba9on	
  theory	
  
– sector	
  dependent	
  vs.	
  order-­‐of-­‐coupling	
  dependent	
  
counter-­‐terms	
  

– complica9on	
  due	
  to	
  broken	
  Ward	
  iden9ty	
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Eigenspectrum	
  of	
  QED	
  (Nf=1)	
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•  Single	
  electron(bound	
  state)	
  +	
  eγ	
  sca$ering	
  states	
  (con9nuum)	
  
•  Larger	
  basis	
  covers	
  wider	
  QED	
  spectrum	
  	
  
•  Mul9ple	
  “copies”	
  of	
  intrinsic	
  spectrum	
  introduced	
  by	
  cm	
  mo9on	
  
•  Renormaliza9on	
  needed	
  for	
  obtaining	
  physical	
  electron	
  mass	
  

e + eγ



General	
  Procedure	
  for	
  BLFQ	
  

1.  Derive	
  LF-­‐Hamiltonian	
  from	
  Lagrangian	
  	
  
2.  Construct	
  basis	
  states	
  	
  
3.  Calculate	
  Hamiltonian	
  matrix	
  elements	
  
4.  Diagonalize	
  	
  	
  	
  	
  	
  	
  (solve	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  and	
  

obtain	
  its	
  eigenspectrum	
  
5.  Evaluate	
  observables	
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P− β = Pβ
− β

O ≡ β Ô β

α ' P− α

α

P−



Evaluate	
  Electron	
  g-­‐2	
  with	
  BLFQ	
  Approach	
  

•  Electron	
  anomalous	
  magne9c	
  moment	
  

•  In	
  pert.	
  theory,	
  the	
  following	
  loop	
  gives	
  the	
  Schwinger’s	
  result	
  
	
  
	
  	
  	
  	
  
	
  
•  In	
  BLFQ	
  ,	
  we	
  first	
  solve	
  for	
  the	
  physical	
  electron	
  state	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  and	
  

then	
  use	
  it	
  to	
  sandwich	
  the	
  F2	
  operator	
  
	
  
	
  

ae ≡
g − 2
2

= F2 (q
2 → 0)

ae = ephys F̂2 (q
2 → 0) ephys

ae =
α
2π

  α= 1
137

!

"
#

$

%
&

[Schwinger	
  1948]	
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ephys



ae / e
2

=
1
8π 2 = 0.11254...

•  	
  	
  As	
  Nmax	
  è∞,	
  results	
  approach	
  Schwinger	
  result	
  
•  	
  	
  Less	
  than	
  1%	
  devia9on	
  from	
  Schwinger’s	
  result	
  (by	
  linear	
  extrapl.)	
  
•  	
  	
  Convergence	
  over	
  wide	
  range	
  of	
  Ω’s	
  (by	
  a	
  factor	
  of	
  25!)	
  

[Zhao,	
  Honkanen,	
  Maris,	
  Vary,	
  Brodsky,	
  2012]	
  	
  

Numerical	
  Results	
  for	
  Electron	
  g-­‐2	
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Ω	
  



Generalized	
  Parton	
  Distribu9on	
  for	
  Electron	
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•  Peak	
  in	
  H(x,0,0)	
  around	
  x=1	
  signals	
  infrared	
  divergence	
  
•  E(x,0,0)	
  approaches	
  perturba9ve	
  results	
  as	
  basis	
  size	
  increases	
  

q1 − iq2
2me

E(x, 0, q) = e↓phys (
q) dy−∫ eixP

+y− /2ψ (0)γ +ψ (y) e↑phys (0)
y+ =0,y⊥=0

 
H (x,0, q) = e↑phys (

q) dy−∫ eixP
+y− /2ψ (0)γ +ψ (y) e↑phys (0)

y+=0,y⊥=0
•  	
  	
  

•  	
  	
  

x = k+ / P+ x = k+ / P+



Conclusion	
  and	
  Outlook	
  (I)	
  
•  Basis	
  Light-­‐Front	
  Quan9za9on	
  (BLFQ)	
  approach	
  

–  first-­‐principles	
  nonperturba9ve	
  method	
  for	
  quantum	
  field	
  theory	
  
–  access	
  light-­‐front	
  wavefunc9on	
  of	
  bound	
  states	
  	
  
–  ini9al	
  applica9on	
  to	
  QED	
  reproduces	
  the	
  Schwinger	
  result	
  for	
  anomalous	
  

magne9c	
  moment	
  
	
  
•  Bound	
  states	
  in	
  QED,	
  underway…	
  
•  Apply	
  to	
  QCD	
  and	
  study	
  hadron	
  spectrum	
  and	
  structure,	
  such	
  as	
  

form	
  factors,	
  generalized	
  parton	
  distribu9on	
  func9on	
  (GPDs),	
  
transverse	
  momentum	
  distribu9on	
  (TMDs)…	
  

•  Finite	
  temperature	
  physics	
  

81	
  







0 2 4 6 8 10 12 140

2

4

6

8

Eigenspectrum	
  of	
  QED	
  (Nf=1)	
  

84	
  

in
va
ria

nt
	
  m

as
s	
  (
M
eV

)	
  

in
va
ria

nt
	
  m

as
s	
  (
M
eV

)	
  
Nmax=K-­‐1/2	
   Nmax=K-­‐1/2	
  

0 2 4 6 8 10 12 140.3
0.4
0.5
0.6
0.7
0.8
0.9

e + eγ

•  Single	
  electron(bound	
  state)	
  +	
  eγ	
  sca$ering	
  states	
  (con9nuum)	
  
•  Larger	
  basis	
  covers	
  wider	
  QED	
  spectrum	
  	
  


