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It is a (1+1)D model involving the non linear constraint  
 
It is a Constrained System 
 
 
Systems with Constraints play a very important role  
in the description of fundamental  laws of nature. 
 
Most of the Systems of Physical Importance are Constrained 
Systems e.g. ED, QED,QCD, EW-Theories ,  String Theories  
and D-Brane Actions are all Constrained Systems. 
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An important class of 2D field theories is represented by 
NLSM's and a class of gauged NLSM's, and the complex 
versions of these models 
 
 
Further these models can also be considered with and 
without the topological terms 
 
In these O(N)- NLSM's, the field sigma is a real N component field 
 
and the ​𝐶𝑃↑(𝑁−1)  models are the complex versions of  the 
NLSM's 
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The motivations for a study of the above models comes from the  
fact that the O(N) NLSM’s in (1+1)-D’s have some striking  
qualitative similarities with QCD. Some of the common features  
of both the FT’s are e.g., renormalizability and asymptotic freedom. 
   
They provide a laboratory for various non-perturbative 
techniques e.g., the 1/N - expansion, operator product expansions 
and the low energy theorems 
and they are very important in the context of string field theories 
and D-brane actions where they appear in the classical limit. 
 
A class of gauged NLSM's and the complex versions of these models 
namely, the ​𝐶𝑃↑(𝑁−1)  models are also well known to possess an infinite 
number of conservation laws and also to be asymptotically free and to 
possess 1/N – expansions 
 
          They also provide a laboratory for testing several interesting  
          theoretical ideas. 
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Non Linear Sigma Model in 2D defined by 
UK+DSK+HJWMK  Helv Phys Acta 66(1993)752-794  
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​𝜎  ≡[​𝜎↓𝑘 (𝑥,𝑡),  𝑘=1,2,…….𝑁]  is a multiplet of N-real scalar 
fields in 2D and  λ(𝑥,𝑡) is another scalar field. The field   
​𝜎 (𝑥,𝑡)    maps the 2D space- time into the N-dimensional  
internal manifold whose coordinates are ​𝜎↓𝑘 (𝑥,𝑡) .  
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one  PC  and  three SC’s ∃
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The symbol           denotes a weak equality in the sense of Dirac, 
and it implies that these constraints hold as a strong equalities  
only on the reduced hypersurface  of the constraints and not in  
the rest of the phase space of the classical theory (and similarly 
one can consider it as a weak operator equality for the 
corresponding quantum theory ) 

≈

The matrix of Poisson brackets among the constraints 
possesses Gauss anomalies and therefore non singular and 
thus its inverse exists .  
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 Thus theory is a Gauge Non Invariant Theory 
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The non vanishing elements of the inverse of the matrix are 
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GISM Construction of GI models corresponding to GNI model 

By calculating Stueckelberg/WZ kind of  
a term [introduced by E.C.G. Stueckelberg 
(HPA  1941)] in the context of renormalization 
 properties of massive gauge theories. 
 
In this method we enlarge the HS of the  
theory by introducing a new field called  
Stueckelberg Field through the redefinition  
of fields in the original Lag density 
 
Then after performing the changes in 
we obtain the modified Lag density 
 
 
 
describes a GI th. 

 
By terminating the chain of SC 
constraints which follows  
from a single PC  
 
In this method we modify  
Hamiltonian density so that 
chain of constraints terminates 
at the desired point. 
 
This method is however applicable 
only if a chain of SC constraint  
follow from a single PC  
 
We reformulate a GNI theory  
into GI theory without any  
change in its physical contents. 
 
 
 

NL
NL

SNI LLL +=
appropiate ST  

original Lag density 

Two methods 
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Theory on the Light-Front 
PAM Dirac  RMP21(1949)392 
S.J. Brodsky et al  PR301(1998)299 

In the LFQ we define the Light –Cone coordinates a la Dirac: 

( )10

2
1: xxx ±=±

And then rewrite all the quantities involved in the Lag. Density of the 
 
theory in terms of           instead of           and    

±x 0x 1x

The idea of quantizing on the Light-Cone as a characteristic surface is  
due to Dirac who called it Front Form dynamics  as opposed to the  
usual space-like surface quantization or the Instant-Form dynamics   

FFSM 
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The theory on the LF  
UK+DSK IJTP(2002)1941-1956 

The theory is seen to possess a set of THREE constraints 
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The Total Hamiltonian density     
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The constraints form a set of FCC’s and the theory is a GI th. 
and is invaiant under the LVGT 
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The theory could now be quantized under suitable GFC’s 

It is Imp to record here that usual original O(N)-NLSM  is a 
GNI theory in the IF, however in the FF it describes a GI theory. 
 
In the Front Form theory there does not exist any problem 
with respect to operator ordering as one encounters in the  
case of IF theory because product of canonical variables  
appear in the CR’s and in the expressions for the constraints. 
 
This problem is however be solved if one demands that all the 
fields and all the canonical momenta are  Hermitian operators 
and that canonical commutation relation be consistent with the 
Hermiticity of these operators. 
J maharana ,   PLB128(1993)411; 
                        Ann Ins.Henri Poincare (XXXIX)(1993)193 
 

FFSM 
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Gauged Non Linear Sigma Model  
UK  IJTP40(2001)491-506 

The NLSM studied so far  do not involve any gauge fields in the th. 
 
Corresponding to these models, if we consider the models involving 
the gauge field, we obtained the so called gauged-NLSM 
 
The O(N)-GNLSM is described by the Lagrangian density in (1+1)D 
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The nonvanishing ETCR’s of the theory under the gauge 
           are finally obtained as     0≈λ
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Gauged NLSM: LFQ 
UK, IJTP(2001)1561-80 

GSM-SR 
F  Form 
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The matrix of PB’s among the constraints           is singular  
with few nonvanishing elements  

∃⇒ No Inverse and the set of constraints is Ist Class 
i.e., The theory is a Gauge Theory. 

Invariant under the following LVGT 
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The nonvanishing ELCTCR’s of the theory under the  
Gauge   ​𝐴↑− ≈0    𝑎𝑛𝑑    𝜆 ≈0   are finally obtained as ;  ≈0   are finally obtained as ; 

[ ​𝐴↑+ (​𝑥↑− ), ​Π↑− (​𝑦↑− )]= ​3/2 𝑖  𝛿( ​𝑥↑− − ​𝑦↑− ) 
[ ​𝐴↑+ (​𝑥↑− ),   ​Π↓𝑘 (​𝑦↑− )]= ​1/2 𝑖​𝜕↓−   𝛿( ​𝑥↑− − ​𝑦↑− ) 

[​𝐴↑+ (​𝑥↑− ), ​𝐴↑+ (​𝑦↑− )]=[​−1/2​𝑒↑2  ]𝑖   ​𝜕↓− 𝛿( ​𝑥↑− − ​𝑦↑− ) 
[​Π↑− (​𝑥↑− ), ​Π↑− (​𝑦↑− )]=[​− ​𝑒↑2 /4 ]ℇ(​𝑥↑− − ​𝑦↑− ) 
[ ​Π↑− (​𝑥↑− ),   ​Π↓𝑘 (​𝑦↑− )]= ​1/2 𝑖𝑒  𝛿( ​𝑥↑− − ​𝑦↑− ) 

[ ​Π↓𝑘 (​𝑥↑− ),   ​Π↓𝑘 (​𝑦↑− )]=[​−1/2 ]𝑖​𝜕↓−   𝛿( ​𝑥↑− − ​𝑦↑− ) 
 



19 

Where the Phase space variables of the theory are:  
​Φ↓𝑘 ≡( ​𝜎↓𝑘 ,𝜆, ​𝐴↑+ , ​𝐴↑− , ​𝑢↓1 , ​𝑢↓2 , ​𝑢↓3 ) with the corresponding respective 
canonical conjugate momenta :​Π↓𝑘 ≡( ​Π↓𝑘 , ​Π↓𝜆 , ​Π↑− , ​Π↑+ , ​​Π↓𝑢 ↓1 , ​​Π↓𝑢 ↓2 , ​​Π↓𝑢 ↓3  ) . 
 
The functional measure [𝑑𝜇] of the generating functional               
 𝑍[ ​𝐽↓𝑘 ]  under gauge-fixing is obtained as :   

[𝑑𝜇]=[4eδ(​𝑥↑− ​− ​𝑦↑− )𝜕↓− 𝛿(​𝑥↑− − ​𝑦↑− )]  [𝑑​𝜎↓𝑘 ][𝑑𝜆][𝑑​𝐴↑+ ][𝑑​𝐴↑− ][𝑑​𝑢↓1 ][𝑑​𝑢↓2 ] 
                [𝑑​𝑢↓3 ][𝑑​Π↓𝑘 ][𝑑​Π↓𝜆 ][𝑑​Π↑− ][𝑑​Π↑+ ][𝑑​​Π↓𝑢 ↓1 ][𝑑​​Π↓𝑢 ↓2 ][𝑑​​Π↓𝑢 ↓3 ][𝛿(​Π↑+ ≈0)] 
                [𝛿(​Π↓𝜆 ≈0)] [(𝛿(​Π↓𝑘 −   ​𝜕↓− ​𝜎↓𝑘 +𝑒​𝐴↑+ )≈0)]  
                [𝛿(​​𝜕↓−   Π↑− +𝑒​𝜕↓− ​𝜎↓𝑘 + ​𝑒↑2 ​𝐴↑+ )≈0)]

                [𝛿((​​𝜎↓𝑘 ↑2 −1)≈0)]  [𝛿(​𝐴↑− ≈0)][[𝛿(𝜆≈0)] 

𝑍[​𝐽↓𝑘 ]=∫↑▒[𝑑𝜇]  𝑒𝑥𝑝 [𝑖  ∫↑▒​𝑑↑2 𝑥  [   ​𝐽↓𝑘 ​Φ↑𝑘 +   ​ℒ↓𝐼𝑂 ] ]     

In the path integral formulation, the transition to quantum theory 
is made by writing the vacuum to vacuum transition amplitude 
for the theory called the generating functional 𝑍[ ​𝐽↓𝑘 ]  of the theory, 
in the presence of the external sources  ​𝐽↓𝑘   e.g., as follows       
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Gauged NLSM with FR 
(present work) 

GSM-FR 
Inst Form 

The Gauged O(N)-NLSM with a new regularization called as the  
Faddeevian regularization 
 
The mass-like term for the vector gauge boson         is different  
that of the gauged O(N)-NLSM with the standard regularization 

µA

In the Faddeevian regularization in the Instant form it is defined 
by the Lagrangian density [ (1+1)D] 
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SM+PM, Zeit.f.phys C67,525(1995); 
                Ann. phys. 241, 68(1995) 

UK, Helv. Phy acta(1998) 
       IJTP(2001);   Can. J. Phys. 80(2002)     
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This theory corresponds to a regularization different from those 
involved in the class of models studied earlier 
 
The 1st term corresponds to a massless boson which is equivalent 
to a massless fermion 
 
The 2nd term is the usual term involving the nonlinear constraint 
                            and the auxiliary field 
 
The 3rd term is the KE term of the EM vector gauge field  
 
The 4th term represents the coupling of the sigma field to the EM field 
 
The last term involving only the e.m. field            may be regarded  
as a signature of the regularization. 
 
This term for the e.m. field            has been explicitly derived by SM+PM 
(z.f.Phys C67(1993)) using the Pauli-Villars method of regularization and 
they have obtained the effective action with the above unconventional 
                  mass term.          

µA

µA

]0)1[( 2 ≈−kσ

µA

GSM-FR 
Inst Form 



22 

The mass term for          arises from the regularization ambiquities 
associated with the definition of current and contains the fermionic 
one loop effects. 

For the gauged O(N)-NLSM  with  the Standard regularization 
the mass term for            is µA

µA

µ
µAAae2

2
1

Regularization parameter 

where  a  is the regularization parameter     [PRL(1985)] 
 
This is the so called  standard regularization 
 
The new regularization used by P. Mitra [PLB(1992)] has been called  
by him Faddeevian Regularization. 

This theory is in accordance with the Faddeev’s Picture of 
anomalous gauge theories 
Faddeev  PL B145,81(1984), 
Faddeev+Shatashivily  PL B167 .,225(1986) 

GSM-FR 
Inst Form 
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We recall that in a true GI theory the matrix of the PB’s of the  
constraints is a NULL matrix.  
 
Faddeev visulaized a situation where anomalies make the PB of 
the Gauss law constraint with itself nonvanishing. 
 
If this happens, the constraints become 2nd class and the GI is lost 
 
Faddeev argued that there would be more physical d.o.f than in the  
case of GI theories because NO GFC’s would be needed to quantize 
the theory.  
 
In the O(N)-NLSM  with the new (so called Faddeevian ) regularization 
considered by  Mitra & coworkers the Faddeev’s mechanism works: namely , 
the constraints become 2nd class through an anomaly in the PB of the 
Gauss Law constraints with itself 
 
The mass like term does not have the Lorentz-Invariance and therefore 
the theory lacks manifest Lorentz. 

However Poincare generators of the theory defined on the  
constraint hypersurface are seen to satisfy the Poincare 
algebra. 

GSM-FR 
Inst Form 
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In view of this, the theory despite the lack of manifest Lorentz-covariace,  
is seen to be implicitly Lorentz-Invariance. 
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GSM-FR 
Inst Form 
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The theory is seen to possess a set of SIX 2nd Class constraints   
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Construction of GI theory (Model-I)  
Enlarge the H.S. of GI th. by introducing a new field 
through the redefinition of fields         ,     and         in 
Through the Stueckelberg Transformations                                                                         
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model-C 
GISM-FR 
Inst Form 
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) operator   (C harge 0J
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IL is invariant under the  LVGT’s 

The GI theory          could now be quantized by fixing the gauge 
 
It is possible also to recover the physical contents of the GNI theory 
         from the GI theory            under some special gauge choices  
and accordingly we choose the GFC’s : 
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The addition of          to          enlarges only the unphysical part of 
the full Hilbert Space of the theory          , without modifying the  
physical contents of the GNI theory   
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Construction of GI theory (Model-II) 

We modify Hamiltonian Density 
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The new GI model is seen to possses Three Ist Class Constraints 
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Now this theory can be quantized as before 
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The gauged NLSM with FR on the LF is defined by the action 
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 singular   is    )}(),({:),( pzwzwS −−−− ΩΩ= βααβ

The above constraints forms a set of FCC’s and the theory is a GI th. 
and is invaiant under the LVGT   
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The  nonvanishing ELCT-CR’s of the theory  
could now be obtained following DQR 
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In the path integral formulation , the transition to quantum theory 
 
is made by writing the vacuum to vacuum transition amplitude 
 
for the theory called the generating functional                of the 
 
theory in the presence of the external sources :       e.g., as follows       
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Conclusions 
Considered the O(N)-NLSM  
----IF-GNI, where it was possible to construct 2-GI models 
     for this theory and  
     the LF model is already GI.    
  
Presented a Gauged O(N)-NLSM with SR 
----and discussed its Quantization in IF and in FF 
 
Presented a Gauged O(N)-NLSM with FR  
----and discussed Hamiltonian quantization 
     of the model on the LF. 
--- Constructed two GI versions of the O(N)-NLSM 
     and discussed their quantization. 
--- possible to recover physical contents of GNI Theory 
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