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It is a (1+1)D model involving the non linear constraint
It is a Constrained System

Systems with Constraints play a very important role
in the description of fundamental laws of nature.
Most of the Systems of Physical Importance are Constrained

Systems e.g. ED, QED,QCD, EW-Theories , String Theories
and D-Brane Actions are all Constrained Systems.




An important class of 2D field theories is represented by
NLSM's and a class of gauged NLSM's, and the complex
versions of these models

Further these models can also be considered with and
without the topological terms

In these O(N)- NLSM's, the field sigma is a real N component field

and the ¢P7(/—1) models are the complex versions of the
NLSM's



** The motivations for a study of the above models comes from the
fact that the O(N) NLSM’s in (1+1)-D’s have some striking
qualitative similarities with QCD. Some of the common features
of both the FT’s are e.g., renormalizability and asymptotic freedom.

% They provide a laboratory for various non-perturbative
techniques e.g., the 1/N - expansion, operator product expansions
and the low energy theorems
and they are very important in the context of string field theories
and D-brane actions where they appear in the classical limit.

3+ Aclass of gauged NLSM's and the complex versions of these models
namely, the CPT(N/—-1) models are also well known to possess an infinite
number of conservation laws and also to be asymptotically free and to
possess 1/N — expansions

3¢ They also provide a laboratory for testing several interesting
) theoretical ideas.




Non Linear Sigma Model in 2D defined by
UK+DSK+HJWMK Helv Phys Acta 66(1993)752-794

Ly =%6ﬂ0k6”0k A0 =1,  k=123....,N

_ %(600% ~9,0)+ Ao =1 k=123... N

o =[alk (xt), £=1,2,....../N]is a multiplet of N-real scalar
fields in 2D and A(x,¢) is another scalar field. The field

o (x,¢) maps the 2D space- time into the N-dimensional
internal manifold whose coordinates are gl4 (x,¢) .

U/‘{O(N) - Vector Z{O(N) - Scalar
O(2) - Scalar O(2) - Scalar
Canonical conjugate momenta resp. to o, and A are
oL" aL"
7T, = =0,0,; P, = =0

Total Hamiltonian density :

Hﬁ=%n%+%alai-i(ai—l)+pia) 5




Hone PC and three SC’s

x1=p;=0 e
12 3={X1»H7N}p=(01%‘1)"0 =C
X3 = {XzaH%V}p =207y = o

Ay = {)@,H}V}p = (27} +420} +20,[8,0,0,]) = 0SC

The symbol = denotes a weak equality in the sense of Dirac,
and it implies that these constraints hold as a strong equalities
only on the reduced hypersurface of the constraints and not in
the rest of the phase space of the classical theory (and similarly

one can consider it as a weak operator equality for the
corresponding quantum theory )

The matrix of Poisson brackets among the constraints X
possesses Gauss anomalies and therefore non singular and
thus its inverse exists .

LVGC 4 ,j" =0

3 vea
Thus theory is a Gauge Non Invariant Theory




The non vanishing elements of the inverse of the matrix are

_ _ (27?2 =462 -6,0,00 |
(T = (T ™y =| = 4"2 L k]é(z—z')—[“]alala(z—z»
010 O

(T3 = (T3 = el )5(2—2')

(T4 = (T )y = o(z-12'")

-1 -1 '
(T )3 = (T )3 = (2 o(z-2')
Finally, the nonvanishing equal-time commutation relations are

[7,(x),0,, ()] = 0’—'2[az<x>nm<y>—m(x)o-m(y)]é(x—y)
k

[0, 7y (9] = 010y, = TIN5y
O




Construction of Gl models corresponding to GNI model

Two methods \

@culating Stueckelberg/WZ kind N
a term [introduced by E.C.G. Stueckelberg

(HPA 1941)] in the context of renormalization
properties of massive gauge theories.

In this method we enlarge the HS of the
theory by introducing a new field called
Stueckelberg Field through the redeflnltlon
of fields in the original Lag density L

Then after performing the changes in LN
we obtain the modified Lag density

I _ 1N S
L =L\ +L1~
[ appropiate ST }

>/

D

@rminating the chain of SC

constraints which follows
from a single PC

In this method we modify
Hamiltonian density so that
chain of constraints terminates
at the desired point.

This method is however applicable
only if a chain of SC constraint
follow from a single PC

We reformulate a GNI theory

into Gl theory without any
Wge in its physical contents.




Theory on the Light-Front
PAM Dirac RMP21(1949)392
S.J. Brodsky et al PR301(1998)299

In the LFQ we define the Light —-Cone coordinates a la Dirac:

And then rewrite all the quantities involved in the Lag. Density of the

+ 1
theory interms of X instead of xO and X

The idea of quantizing on the Light-Cone as a characteristic surface is
due to Dirac who called it Front Form dynamics as opposed to the

usual space-like surface quantization or the Instant-Form dynamics




The theory on the LF
UK+DSK IJTP(2002)1941-1956

S =fL dxTdx”

L=[0,0,9_0, + Ao} =1)]
The theory is seen to possess a set of THREE constraints

Yl =pli=0 (PC)
W2 =(mlk —0l— glk )=0 (PC)
W3 =(clk.oclk—0dl— alk)=0 (5C)

Sap(w™sz7 ) =4y (W"), xp(z7)}, 18 singular

The Total Hamiltonian density

Hy = [de |30} -1)+ pu+ (2, -9.0,))

where u and v are LMF's

10



The constraints form a set of FCC’s and the theory is a Gl th.
and is invaiant under the LVGT

oo, = P(x,t); omp=0_f(x,t); ov=0_,p(x,t)
Oh=0u=0p; =0=9or, =or, =0

11




The theory could now be quantized under suitable GFC'’s

It is Imp to record here that usual original O(N)-NLSM is a
GNI theory in the IF, however in the FF it describes a Gl theory.

In the Front Form theory there does not exist any problem
with respect to operator ordering as one encounters in the
case of |IF theory because product of canonical variables
appear in the CR’s and in the expressions for the constraints.

This problem is however be solved if one demands that all the
fields and all the canonical momenta are Hermitian operators
and that canonical commutation relation be consistent with the
Hermiticity of these operators.
J maharana, PLB128(1993)411;

Ann Ins.Henri Poincare (XXXIX)(1993)193
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Gauged Non Linear Sigma Model
UK 1JTP40(2001)491-506

The NLSM studied so far do not involve any gauge fields in the th.

Corresponding to these models, if we consider the models involving
the gauge field, we obtained the so called gauged-NLSM

The O(N)-GNLSM is described by the Lagrangian density in (1+1)D

| |
8,010 0, + Aoj —1) - ZFWF“V —ed,8"0; + EezAﬂA“

_1
Mz
1 |
= (@007 = 9107) + Mo} = 1)+ (@A = 8,4y)’

1 2 2
- e(Agd 0y = 4i0104) + — e (dy” = 4y")
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1
H = E[ﬂ,f +E*+(0,0,) +e*4," 1+ Ed, A, + ed,, —ed (9,0,

|
- Aoy -1) - 562[(/10 —A) 1+ 7w+ pyw
The theory possesses FIVE constraints:
x1 =1y =0
X2=p; =0
x3=(0,E-em;)=0
2
x4 =(0; -1)=0
X5 = (20'k7l'k + 2€A00'k) ~ ()
Here myp, m and E(:= 71'1) are the canonical

momenta corresponding to Ay, A0, and Ay resp.

The set of above constraints form a set of FCC’s and the th. is a Gl th.

A=1 The divergence of the vector current density 9“;, =0 under the

&

gauge constraimt A ~0 which is, n fact, equivalent to temporal o

time axial kind of a gauge for the coordinate A. 4



The nonvanishing ETCR'’s of the theory under the gauge
A= (0 are finally obtained as

Ay (), 70 (1)] = ;—j(xx ~ )

A4 (07, ()] = = 010(x - )
[A1(x), E(y)] =io(x=y)

Ay (), A4 ()] = e’—;al(xx—y)

[70(x), 7, ()] = ';iau - )

15




Gauged NLSM: LFQ
UK, IJTP(2001)1561-80

S =fL dx*dx”

L=0,0,0_0,+A(0;, -1 +%(3+A+ -9_ A7)’

—e[A7(0_0,)+ A% (0,0,)]+[e’4"A"]

Canonical Hamiltonian density

H, = %(H‘)2 +T17(0_A7)-ed (0.0,)-A(o, -1)-e’ A% A"

Constraints

Q =¢=I1"=0 (PC)
Q,=y,=11,=0 (PC)
Q. =x,=(1,-0_0,+ed")=0

19

Q={y,H;}= (0, -1)=0

(PC)

=0, H =[0I +e(d_0,)+e’4*]=0 (SC)

(SC)

16



The matrix of PB’s among the constraints §
with few nonvanishing elements

Sy =[-20_0(w™ -z7)]
S;s=-8 =[-200(w -z7)]
S, =[-2e°0_0(w -z7)]

op 1S singular

= 9 No Inverse and the set of constraints is Ist Class
i.e., The theory is a Gauge Theory.

Invariant under the following LVGT
o, =ef(x,t); 04" =0_p(x,t); 04" =0, [(x,t); OA=-0p(x,t)
=0 a ﬁ(x t) 5” - —8+8+/3’(x,t); 5“3 =ea+/3’(x,t);
§Hu1 = Ollu, = 0llu, =0ll, =01, =oll" =0ll" =0

Total Hamiltonian density
HJT = Héc +1174+ udl +I1IA ud2 +(I1Jk —dd— olk +eAT+ )ud3
17




The nonvanishing ELCTCR’s of the theory under the
Gauge A7-=~0 and 41~0 are finally obtained as ;

[AT+ (xT—= )1T— (yT—)]|=3/2 i S(xT— —yT-)

[AT+ (xT— ), Wk (1= )]=1/2 idl— H(xT— —yT-)
[AT+ (xT— ),AT+ (yT—)]=[-1/2eT2 i dI— S(xT— —yT-)
[~ (1= )T~ (/1= )]=[~eT2 /4 JE(xT— —yT1—)
17— (xT— ), Ik (yT—- )]=1/2 ie 6(xT— —yT—)
[k (xT— ), Wk (1= )|=[-1,/2 Jidl— K xT— —yT—)

18



In the path integral formulation, the transition to quantum theor
IS made by writing the vacuum to vacuum transition amplitude

for the theory called the generating functional Z[/i4] of the theory,
in the presence of the external sources /i&# e.g., as follows

Where the Phase space variables of the theory are:
Ol =( adk ALAT+ ,AT—, wdl ,ud2 ,ud3 ) with the corresponding respective
canonical conjugate momenta 14 =( A, LA T— 1T+ T2 J1 ,T1u 42, T .

The functional measure [dx] of the generating functional
Z|/44] under gauge-fixing is obtained as :

[du]=[4ed(xT— —yT—)II— S(xT— —yT— )| |[dolk |[dA]|[dAT+ |[dAT— ][ dudl |[du
[aduwl3 J[d1k J|[dTA ] [al T— ][0T+ [[adllda 41 [[adlldae 42 [[alldae 3, ][6
[6(1IA=0)] [(6(Ndk — II— alk+eAT+ )=0)]

[0(Dd— NIT— +edl— alk+eT2 AT+ )=0)]

[((alk T2 —1)=0)] [6(AT— =0)][[6(1=0)]

19




Gauged NLSM with FR

(present work)

The Gauged O(N)-NLSM with a new regularization called as the
Faddeevian regularization

The mass-like term for the vector gauge boson A " is different
that of the gauged O(N)-NLSM with the standard regularization

In the Faddeevian regularization in the Instant form it is defined
by the Lagrangian density [ (1+1)D]

N 1 2 1 | o)
Lo, = Eaﬂaka/“‘ak + Ao}, —1)—ZFWF”V -ed,0"0y e A M A,
!
2
1
582[(140 — A)? = 44;°]

. 1] E SM+PM, Zeit.f.phys @,525(1995);}

gsmﬂ
1
. E(aoa,% ~0,07)+ Ao} =)+ (894 -9, 4p)°

—e(A4y0 ooy — 410104 ) +

=1_ _3 Ann. phys. 241, 68(1995)

UK, Helv. Phy acta(1998) 0
IJTP(2001); Can. J. Phys. 80(2002)




This theory corresponds to a regularization different from those
involved in the class of models studied earlier

The 1st term corresponds to a massless boson which is equivalent
to a massless fermion

The 2nd term is the usual term involving the nonlinear constraint
[(62 - 1) = 0] and the auxiliary field

The 3rd term is the KE term of the EM vector gauge field Aﬂ
The 4th term represents the coupling of the sigma field to the EM field

The last term involving only the e.m. field A
as a signature of the regularization.

u  may be regarded

This term for the e.m. field A,u has been explicitly derived by SM+PM
(z.f.Phys C67(1993)) using the Pauli-Villars method of regularization and
they have obtained the effective action with the above unconventional

@‘ mass term.
@ .




The mass term for A,, arises from the regularization ambiquities
associated with the definition of current and contains the fermionic
one loop effects.

For the gauged O(N)-NLSM with the Standard regularization
the mass term for Aﬂ is

laezA#A”
2]

Regularization parameter

where a is the regularization parameter [PRL(1985)]
This is the so called standard regularization

The new regularization used by P. Mitra [PLB(1992)] has been called
by him Faddeevian Regularization.

anomalous gauge theories
Faddeev PL B145,81(1984), 22

A@‘ This theory is in accordance with the Faddeev’s Picture of
Faddeev+Shatashivily PL B167 .,225(1986)




We recall that in a true Gl theory the matrix of the PB’s of the
constraints is a NULL matrix.

Faddeev visulaized a situation where anomalies make the PB of
the Gauss law constraint with itself nonvanishing.

If this happens, the constraints become 2nd class and the Gl is lost

Faddeev argued that there would be more physical d.o.f than in the
case of Gl theories because NO GFC’s would be needed to quantize
the theory.

In the O(N)-NLSM with the new (so called Faddeevian ) regularization
considered by Mitra & coworkers the Faddeev’s mechanism works: namely ,
the constraints become 2nd class through an anomaly in the PB of the
Gauss Law constraints with itself

The mass like term does not have the Lorentz-Invariance and therefore
the theory lacks manifest Lorentz.

However Poincare generators of the theory defined on the
constraint hypersurface are seen to satisfy the Poincare
algebra. 23




In view of this, the theory despite the lack of manifest Lorentz-covariace,
is seen to be implicitly Lorentz-Invariance.

For L d,j" =0

gsm 2

= NO VGS at the classical level
Total Hamiltonian density
|
sz\; = 5(71']% + E2 + 610']% + ezAg) + E61A0 + eAOnk - eAlalak

- Mo} —1)-%(32[(1‘10 — A)* =44 |+ mgu + pyy

24




The theory is seen to possess a set of SIX 2"? Class constraints

Q=9 =my=0 (PC)
Qy=y;=p,=0 (PC)

Q;={p.Hy } =(3,E —emy —e” 4) =0 (SC)
Q= {y,Hy }=(0f =1)=0 (SC)
Qs ={p), HY } = (=¢*E +2¢9, 4, +2elo;, ) =0 (SC)
Qg =y, Hp } = 207y +2e0, 4y) =0 (SC)

Here =y, p;,E(= nl) and 7, arethe momenta can. conjugate

resp. to Ay,4,4; and oy

Mlaf (2,27, ) ={Qla QI Np is now nonsingular
=7hat QlIT are2nd—class and that the theory is GN/

25



model-C
GISM-FR
Inst F-ST

Construction of Gl theory (Model-I)

Enlarge the H.S. of Gl th. by introducing a new field HN
through the redefinition of fields & ,A and 4# in Lgsm
Through the Stueckelberg Transformations

olk->Xlk=0lk — 8 and A - A=1+ 0l04F
ATu— ATu= ATu+Tu b

A S Ay

gsm

L= (“228){(300)2 ~(0,0)1-1+e)0,0,0,0-0,0,00)+ A0 -20,0)
1

+(0,0)(07 +60° -20,0-1)+¢[A,(3,0)- A, (,0)] +5e2(aoe- 9,60

+ e (A, - A)0,0-0,0)-267(0,0) - 4e*A,(9.0)

L' describes a GI theory
Check for the Gl of the new theory

The ELE'sfor L'= 9 ,j" =d,j +d,j =0 2




QA
= that L' possesseses (at the classical level) VGS, st For
(s.t. 3 NO VGA)

’
L' s seen to possess a set of 5 constraint s, three PC's and two SC'sg

m=¢ =my=0 (PC)
ny=y;=p,; =0 (PC)
ny=yi=[my+(1+e)t, —of =0 +20,0 +1+e*(0,0+ 4,)=~0 (PC)
N ={p1, H7 } =[0,E —emy — &’ (4 +3,0)] =0 (SC
ns = 4w, Hp }=[(of = 1)+ (0% = 20,0)] =0 (SC)

The matrix of PB's of the constramt s 77, 1s seen to be sngular
= that the constramt s 7, form a set of Ist class constramt s

and that the theory L' is GI

27




model-C
GISM-FR
Inst Form

Generator of LVGT

(Charge operator JO)

JY =fj0dx

) =[Blgoy —edy = (1+€)d01-8,8(do4 - 8, 4p)
+ B(142e)0,0 = (1+€)d o) + (0, —=0)* =1+ ed,
-+ 82(140 —_ Al -+ 608 — 619)]

(Current operator J')

J! =fj1dx

j' = pl-0,0, +ed; - (1+¢)3,01+d,f(8 4, —0,4y)
+ f[-(1+2e)3,0 + (L + e)d,0, — ed; — e* (30 - 9,0)
—e*(dy - A)) - 4e* (4, +9,0) 28




model-C
GISM-FR
Inst For

L] is invariant under the LVGT’s

00y = p(x,1); oA ==09¢p(x,0); 0t = p(x,1);
04y = =090 f(x,t) 04 =-9,p(x,1)

The Gl theory L] could now be quantized by fixing the gauge

ItZ{F possible also to recover the physical contents of the GNI theory
L o from the Gl theory LI under some special gauge choices
and accordingly we choose the GFC’s :

pr=0=~0
py =[20,7; +2edyo; — 1y — (14 e)w; —e* 4]~ 0
p3 = [-¢’E + 26261/11 +2er0; |=0

The addition of LTS to LT/ enlarges only the unphysical part of
the full Hilbert Space of the theory LT/, without modifying the

physical contents of the GNI theory ZTA -




model-D
GISM-FR
Inst For

Construction of Gl theory (Model-Il)

We modify Hamiltonian Density

1
Hi =Hp =[(8,E - en; —e”4) 4, ‘57?1%]

|
JE[ 2y E?+(9,0,) + 24y 1+ Ed, Ay + edyr, — e4;(3,0})

_ (a2 -1) —%62[(140 A 4 A2 4 mgu+ pyy

1
~[(8,E - eny —e° 4)) 4, ‘57[1%]

and the associated Lag density with the help of HE’s

| 3
| = 5[@04)2 +(0,0,)"1+e4,(8,0,) + Ao -1) _Eeuf

30



model-D
GISM-FR
Inst For

The new Gl model is seen to possses Three Ist Class Constraints

Q=9 =my=0 (PC)
Q) =y =p, =0 (PC)
Qs ={y,Hi} = (0f =1)=~0 (SC)

and M ,p =033 (null matrix)
= the theory 1s a Pure GI theory

Now this theory can be quantized as before

31




The gauged NLSM with FR on the LF is defined by the action

S = f I dx*di

1 _
L=9,0,0_0; + Moj -1) +5(8+A+ —9_47)°

—e[A7(0_oy)+ AT (8,0,)]+[2e* 4" A" —e*(47)*]

The theory is seen to possess a set of three PC’s constraints and
two secondary Gauss-Law constraints:

Q=g =11"=0

Q) =y, =11, =0

Qs =y =(Il, —9_o; +ed*) =0

Qu={p,HY } =[d_I1" +e(d_0, ) +2e*(4* = 47)]=~0
Qs ={y,Hy } = (o = 1) =0

Here I1%,IT,, I"and IT, are the LC can momenta conjugate

32
resp. to A”,A, AT and o}



Sup(w,z7)=1{Q,(w"),Q,(z7)}, 18 singular

The above constraints forms a set of FCC’s and the theory is a Gl th.
and is invaiant under the LVGT

00, =ef(x,t); 04" =9_p(x,1); 04" =9,[6(x,1);
ou=0a_0,p(x,t);, ow=ed f(x,t); OA=0v=0;
Oll, =01, =0l1" =0l1" =9Il , =0l =0I1 =0

Total Hamiltonian density
H! = %(H-)2 +I7(0_A)-ed (9_0,)- Ao -1)

—2e’A A+’ (A7) +Mu+Ml,v+(I1, -0_0, +ed )w

Jdere u(x,t),v(x,t) and w(x,t)are Lagrange multiplier fields and

HT =fHTdX_ 33



The vector gauge current of the theory J* = (J*,J7) is

J* =f Jr” =f dx™[(d_o; —ed*)ef+0_p(d, A" —a_A7)]

J" = f jmdx = f dx"[(8,04 —eA )ef +,f(8, 4% —9_47)]

It implies that the theory possesses a local vector gauge symmetry.

The LF theory could now be quantized under the appropiate
LC gauges, accordingly we choose GFC'’s

g:iﬂo

The divergence of the vector current density
0. =09 j +9_j. =2ero,f=0
under the gauge A =0 34




The nonvanishing ELCT-CR’s of the theory
could now be obtained following DQR

[0 (), T, ()] = i[6(x = y)= 2K 8(x »)]

LA™ (), 1T, ()] = 2ia_é<x—y>

[A™(x), 11" (»)] = ()o(x - y)
A" (x), 117 (y)] = ()o(x = y)
A" (x), A" (y)] =()d_o(x=y)
(A7 (x), AT (¥)] = (=)o(x =)

[T, (), T1, ()] = %ax )

35




In the path integral formulation , the transition to quantum theory
Is made by writing the vacuum to vacuum transition amplitude
for the theory called the generating functional Z[Jk] of the

theory in the presence of the external sources : Jk e.g., as follows

Z[J,] =f[dﬂ] exp[ifdx [J, @ +11 (3,0, )+I1,(0,A)+ 117 (9,4
+ 117 (0, A")+ 1 (9, u)+m,(0,v)+m (3, w)-H, ]

36




where the Phase space variables of the theory are :

O =(0,,A, 47,4 ,u,v,w) withth e corresponding respective

canonical conjugate momenta : IT, = (IT,,IT,,IT°,IT",IT ,IT ,IT )

The functional measure [du] of the generating functional

Z[J,] under this gauge - fixing is obtamed as:
1

[du] = [ (-4)e®(8_6(x" =y ) (S (x-y))*1*[do, ][dA][dA™[dA
du][dv][dw][d11, ][dI1, ][dT1* ][dT1"][dI1,][d11, ][], ]
ST = 0)][S(IT, = 0)][5(IT, -9 _0, +ed") ~0)]




#* Considered the O(N)-NLSM
----IF-GNI, where it was possible to construct 2-Gl models

for this theory and
the LF model is already GI.

#*  Presented a Gauged O(N)-NLSM with SR
----and discussed its Quantization in IF and in FF

#*  Presented a Gauged O(N)-NLSM with FR
----and discussed Hamiltonian quantization
of the model on the LF.
--- Constructed two Gl versions of the O(N)-NLSM
and discussed their quantization.

-—- pQssible to recover physical contents of GNI Theory

=L
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