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Oscillator Basis and Scattering

Oscillator basis is widely used is nuclear structure studies,
in ab initio NCSM in particular.

Is there a way to relate directly results of shell model
calculations with oscillator basis to scattering information?

I suggest to start from constructing oscillator basis. It can be
generated using the Lanczos algorithm. As a result, it is
possible to formulate a Lanczos scheme which combines
naturally scattering and nuclear structure problems.



Oscillator Basis and Scattering

Plan:

Constructing infinite oscillator basis using Lanczos scheme.
Free motion, Hamiltonian, boundary conditions for
scattering and bound states.

How this scheme can be applied to ab initio studies of
many-body systems.

Simple example: You obtained a state E; in continuum in
shell model (e.g., NCSM) calculation — how is it related to
the experimental scattering information? Which E; values
are consistent with scattering phase shifts?

Important consequence: Sid Coon et al [PRC 86, 054002
(2012)] extrapolations for resonant states.



Lanczos algorithm

o — arbitrary (random) pivot vector

p—1 =10
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Iterations:
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Oscillator basis

* Matrix of the kinetic energy operator T is tridiagonal in
oscillator basis: T, =0if |n-m| > 1.

TSOn = dnn—-1¥n—-1 e TnnSOn aF Tn,n—l—l@n-l—l

* Kinetic energy operator T generates oscillator basis

*x either from below:

v, Loo= 1, T1= pa, ..

* or from above:
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Free Schrodinger equation

TV = EV
* Wave function expanded in oscillator basis:

VU = Z Bl Aok
n=0

* The kinetic energy matrix in oscillator basis 1s tridiagonal, hence
a, are solutions of a three-term recurrent relation (IT'RR):

Tn,n—lan—l =t (Tnn T E)afn e Tn,n—|—1afn—|—1 =l
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Free Schrodinger equation:
TRR solutions

Tn,n—lan—l s (Tnn T E)aﬂn i Tn,n—l—la/n—i—l =0; N

* Analytical expressions are known for linearly-independent
solutions s, and c, of this TRR.

nn! 1+1 qz 412 ;2 2F
S (E)= exp| — | L R = f—

' =/ 2
C (E)=(-1) i T ___exp| —L | d(-n—1-1/2,-1+1/2:¢%)
T(n+(+3/2) T(-1+1/2) 2
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Free Schrodinger equation:
TRR solutions

Tn,n—lan—l I (Tnn %% E)an ik Tn,n—l—lan—l—l =

% «Broperties okis and ¢ tor’E > 0:

S 2 2 z
an(E) Doy = = \/;krjl(kr) —> 4/ —sin (kr — W—) :

r—00 T )
n=0
S - 2 2 7l
BN o —— W = ) (S et U
;c (E) @ el 7T rny( T)r—mo = COS( r 2)

* Any TRR solution a, can be expressed as a, = cos 0 s, +sin0 ¢,
at E> 0, where O is a scattering phase shift.

* For bound states (E < 0), a physically acceptable solution
¢ = ¢, + is, rapidly decreases with n
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Hamiltonian
H=T+V

A reasonable approximation is
to truncate the potential

energy matrix: V,, =0 for T+V
n,m > N, kinetic energy is not
truncated.

Justification: kinetic energy

m. e. increase with n linearly
atlargen: T,, ~n, T, ., ~n, n—> oo,

while potential energy m. e.
V., decrease with n and m.
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Lanczos algorithm
H=T+V

V.., =0for nm> N, kinetic I

n
energy matrix is infinite.

With H we first generate from
above the oscillator basis
functions ¢, with n = N.

After that we construct
Lanczos basis of states @,
which are superpositions of
oscillator states ¢, withn < N.
H is tridiagonal in this basis.
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Lanczos HORSE = [-matrix

HORSE = Harmonic Oscillator
Representation of Scattering Equations

This is a reformulation of the [-matrix
formalism known in scattering theory.
Hopefully it is more convenient for
realization of an ab initio no-core shell
model approach to reactions.

We just extended a usual Lanczos
procedure convenional for many-body
applications which should be used with a
different boundary condition: (i) scattering
a,=cosOs, +sin0 ¢, or (ii) decreasing a,,
at large n.
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How does it work
and does it work at all?

Woods-Saxon potential with 3 bond states
d wave, hw=25 MeV
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Calculations are performed using the standard Lanczos algorithm with a
specific pivot
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Possible many-body
ab initio applications

n-A scattering: if ¥ , is obtained with
N,...= 0, everything looks like a \
conventional Lanczos SM run in the A+1
system with a specific pivot vector. The SM
Lanczos basis is extended analytically to
involve states with large quanta.
Interpretation of the results is different. If

Y , is obtained with N__ > 0, we need to

add N, ../ 2 vectors to the conventional

Lanczos scheme coupled by kinetic energy
to the rest vectors.

0805 hsindc,, n>N. Va1 = VYatre
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Possible many-body
ab initio applications

p-A scattering: Coulomb interaction can be' 3
included in the approach. One of the
respective methods requires adding
additional channel states in the Lanczos SM
run in the A+1 system - the number of such
states is about 50—80. Another method
allowing for the Coulomb does not require
adding additional channel states.
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Possible many-body
ab initio applications

A, + A, scattering: looks like that the most b
complicated problem now is
transformation from the A, + A, cluster

structure to the SM structure of the A; + A,
system.
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Possible many-body
ab initio applications

Bound states: the TRR solutions a, decrease .
with n when n > N at E < 0. Extending the
SM Lanczos basis by oscillator states with

n > N is equivalent to calculating binding
energies as the respective S-matrix pole. It
improves the variational binding energies,
rms radii, EM transitions, etc.
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How does it work
and does it work at all?

Bound state:
113 in a cluster model
Note rms radius
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Relation to standard SM:

Hamiltonian eigenstates
Hn,n—lan—l s (Hnn oy E)an s Hn,n+1an-|—1 =

Boundary condition: Hy ny_1an—1(Ex) + (Hyy — E)an(Ey) =0
or CLN_|_1(E>\) =40

If the phase shifts are known experimentally,
it is easy to solve numerically:

N
an+1(Ex) =cosd(E))Sn11(Ey) +sind(Ey)Cni1(Ex) ~ -
Sn+1(E»)

Cn+1(EN)
E ; are eigenstates that are consistent with scattering information for
given A2 and N, ,; this is what you should obtain in any calculation
with oscillator basis and what you should compare with your ab initio results.

an+1(FEy) =0, hence tand(FE)) =

Nuclear Theory in the Supercomputing Era



degrees

Universal function

S (E)
arctan(- S,/ Cgyp) fnl <t i Cnl (E)

N+1=10, 1=0

1980- I I I 1 I 1 1 I I I I 1 1 1 I

1800

1620

1440

1260

1080

720

360

=0 \

Ecm (h€2)




Phase shift and eigenvalue
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N o scattering and NCSM,, JISP16
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N a non-resonant scattering and NC5M, JISP16
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S. Coon et al extrapolations

S. A. Coon, M. 1. Avetian,

M. K. G. Kruse, U. van Kolck,
P. Maris, and J. P. Vary, PRC 86,
054002 (2012)

Whatis A .. dependence for
resonances?

PHYSICAL REVIEW C 86, 054002 (2012)
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FIG. 7. (Color online) The ground-state energy of “H calculated
at five fixed values of A = /my(N + 3/2)hw and variable A,. =
Vmyhw)/(N + 3/2). The curves are fits to the points and the
functions fitted are used to extrapolate to the ir limit A, = 0.
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E
f(E)= arctan(— S (E) ] scaling with
C (E)

Limit n — oo

Age = (mhQ) 1 (2n+1+3/2)
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Universal function scaling
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Breit—Wigner resonance
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ds

dE

* Is it positive?
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ds 1

1 2

1

dE

E=E, /ISC

* Is it positive?

do

“=50: He 3/2° (147Q)
dE

(I ~150 keV)
dd
i "~ (12hQ
s He 1/27 ( )

(I ~100 keV)

9

Z(q,)

b dA,

Ev//lSCJ

150

o
=)
S

61 (degrees)

50

0

Nuclear Physics in the Supercomputing Era




Resonance:
E. =434 keV
[ =150 keV

Example: "He, 3/2-
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Conclusions

* If the phase shifts are known experimentally, one can easily
check whether states obtained in the shell model above the
threshold are consistent with the phase shifts. These states
should have sometimes energies far from the resonance and
should be obtained in the case when there is no resonance
with given J 7.

* If case when the eigenstate is found in the vicinity of the
resonance, its width can be calculated.

* The Lanczos algorithm can be extended to calculate
reactions within the shell model.

Nuclear Physics in the Supercomputing Era



Main conclusion:

* Thank you!
* Happy birthday!

Nuclear Physics in the Supercomputing Era



