Recent Results with the Lorentz Integral Transform (LIT) Method

Outline

- Introduction
- Electron scattering off ${ }^{3,4} \mathrm{He}$
- Energy resolution in the LIT approach
- Role of 0^{+}resonance in ${ }^{4} \mathrm{He}\left(e, e^{\prime}\right)$

Introduction

Consider an observable $R(E)$ and an integral transform $\Phi(\sigma)$:

$$
\Phi(\sigma)=\int \mathrm{dE} K(\sigma, \mathrm{E}) \mathrm{R}(\mathrm{E})
$$

with some kernel $\mathrm{K}(\sigma, \mathrm{E})$

Often it is easier to calculate $\Phi(\sigma)$ than $\mathrm{R}(\mathrm{E})$. Then the observable $R(E)$ can be obtained via inversion of the integral transform. In order to make the inversion sufficiently stable the kernel $\mathrm{K}(\sigma, \mathrm{E})$ should resemble a kind of energy filter (Lorentzians, Gaussians, ...); best choice would be a δ-function.

Introduction

Consider an observable $R(E)$ and an integral transform $\Phi(\sigma)$:

$$
\Phi(\sigma)=\int \mathrm{dE} K(\sigma, \mathrm{E}) \mathrm{R}(\mathrm{E})
$$

with some kernel $\mathrm{K}(\sigma, \mathrm{E})$

Often it is easier to calculate $\Phi(\sigma)$ than $\mathrm{R}(\mathrm{E})$. Then the observable $R(E)$ can be obtained via inversion of the integral transform. In order to make the inversion sufficiently stable the kernel $\mathrm{K}(\sigma, \mathrm{E})$ should resemble a kind of energy filter (Lorentzians, Gaussians, ...); best choice would be a δ-function.

For the LIT we consider Lorentzians: $\mathrm{K}(\sigma, \mathrm{E})=\left[\left(\mathrm{E}-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{1}^{2}\right]^{-1}$

LIT - Inclusive Reactions

Cross section described by response functions $R(\omega)$

$$
\left.R(\omega)=\sum_{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

1. Solve for many ω_{0} and fixed Γ

$$
\left(H-E_{0}-\omega_{0}+i \Gamma\right) \tilde{\Psi}=\Theta|0\rangle
$$

LIT - Inclusive Reactions

Cross section described by response functions $R(\omega)$

$$
\left.R(\omega)=\sum_{n}^{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

Electron scattering: longitudinal
$\left(R_{L}\right)$ and transverse $\left(R_{T}\right)$
responses with nuclear charge and current operators, respectively

1. Solve for many ω_{0} and fixed Γ

$$
\left(H-E_{0}-\omega_{0}+i \Gamma\right) \tilde{\Psi}=\Theta|0\rangle
$$

2. Calculate

for given ω_{0} and Γ

for a Theorem based on closure
3. Invert transform

2. Calculate

for given ω_{0} and Γ

for a Theorem based on closure
3. Invert transform

Normally we replace ω_{0} by σ_{R} and Γ by σ_{1}

main point of the LIT :

Schrödinger-like equation with a source

$$
\left(H-E_{0}-\omega_{0}+i \Gamma\right) \tilde{\Psi}=S
$$

The $\tilde{\Psi}$ solution is unique and has bound state like asymptotic behavior

Reformulation of the LIT

$$
\operatorname{LIT}\left(\sigma_{R^{\prime}}, \sigma_{\mathrm{f}}\right)=\operatorname{Im}\left\{\left\langle\Psi_{0}\right| \Theta^{\dagger}\left(\sigma_{\mathrm{R}}+\mathrm{E}_{0}-\mathrm{H}+\mathrm{i} \sigma_{\mathrm{F}}\right)^{-1} \Theta\left|\Psi_{0}\right\rangle\right\}
$$

Reformulation of the LIT

$$
\operatorname{LIT}\left(\sigma_{R}, \sigma_{1}\right)=\operatorname{Im}\left\{\left\langle\Psi_{0}\right| \Theta^{\dagger}\left(\sigma_{R}+E_{0}-H+i \sigma_{1}\right)^{-1} \Theta\left|\Psi_{0}\right\rangle\right\}
$$

with calculation via Lanczos algorithm

Reformulation of the LIT

$$
\operatorname{LIT}\left(\sigma_{R}, \sigma_{1}\right)=\operatorname{Im}\left\{\left\langle\Psi_{0}\right| \Theta^{\dagger}\left(\sigma_{R}+\mathrm{E}_{0}-\mathrm{H}+\mathrm{i} \sigma_{1}\right)^{-1} \Theta\left|\Psi_{0}\right\rangle\right\}
$$

with calculation via Lanczos algorithm

The LIT method seems to consist in a discretization of the continuum. However, this is not the proper interpretation, since the result can only be used correctly within an integral transform approach

First case: Transverse response function $\mathrm{R}_{\mathrm{T}}(\mathrm{q}, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

First case: Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

First case: Transverse response function $\mathrm{R}_{\mathrm{T}}(\mathrm{q}, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame ($\mathrm{P}_{\mathrm{T}}=-\mathrm{Aq} / 2$) and subsequent transformation to laboratory system

First case: Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame ($\mathrm{P}_{\mathrm{T}}=-\mathrm{Aq} / 2$) and subsequent transformation to laboratory system

Calculation of bound state wave function and solution of LIT equation with the help of expansions in correlated hyperspherical harmonics

First case: Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame ($\mathrm{P}_{\mathrm{T}}=-\mathrm{Aq} / 2$) and subsequent transformation to laboratory system

Calculation of bound state wave function and solution of LIT equation with the help of expansions in correlated hyperspherical harmonics

Nuclear force model: Argonne v18 NN potential and Urbana 3NF

L. Yuan et al., PLB 706, 90 (2011)

Experimental data:
Bates, Saclay,
world data (J. Carlson et al.)

Strong Δ effects in $\mathrm{T}=3 / 2$ channel beyond the peak
\Longrightarrow
for this kinematics Δ effects are important in 3-body breakup reactions

Next case: Longitudinal response function $\mathrm{R}_{\mathrm{L}}(\mathrm{q}, \omega)$ of ${ }^{4} \mathrm{He}$ at low q

(e,e') Longitudinal Response

SURPRISE:

LARGE EFFECT OF 3-BODY FORCE AT LOW q

Calculation via EIHH with force model:
AV18 + UIX

S.Bacca et al.,PRL 102, 162501

Dependence on different 3-nucleon forces

Resolution of the LIT approach

Resolution of the LIT approach

The LIT approach is a method with a controlled resolution!

Resolution of the LIT approach

The LIT approach is a method with a controlled resolution!

Let's take deuteron photodisintegration as an example

LIT - Example

deuteron photodisintegration in unretarded dipole approximation
unretarded dipole approximation $\Rightarrow \Theta=\sum_{i=1}^{A} z_{i} \frac{1+\tau_{i, z}}{2}, \begin{aligned} & z_{i}, \tau_{i, 2}: 3^{\text {rd }} \text { componts } \\ & \text { of position and } \\ & \text { isospin coordinates }\end{aligned}$
$\Rightarrow \quad \sigma_{\gamma}(\omega)=4 \pi^{2} \alpha R(\omega) \quad$ with $\quad R(\omega)=f_{f}|<f| \Theta|0>|^{2} \delta\left(\omega-E_{f}-E_{0}\right)$
with $\mid 0>$ and E_{0} bound-state wave function and energy
|f> and E_{f} final-state wave function and energy

LIT - Example

deuteron photodisintegration in unretarded dipole approximation
unretarded dipole approximation $\Rightarrow \Theta=\sum_{i=1}^{A} z_{i} \frac{1+\tau_{i, z}}{2}, \begin{aligned} & z_{i}, \tau_{i, z}: 3^{3 / 4} \text { componts } \\ & \text { of position and } \\ & \text { isospin coordinates }\end{aligned}$

$$
\Rightarrow \quad \sigma_{\gamma}(\omega)=4 \pi^{2} \alpha R(\omega) \quad \text { with } \quad R(\omega)=f_{f}|<f| \Theta|0>|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

with $\mid 0>$ and E_{0} bound-state wave function and energy |f> and E_{f} final-state wave function and energy

Possible np final states: ${ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}-{ }^{3} F_{2}$

LIT - Example

deuteron photodisintegration in unretarded dipole approximation
unretarded dipole approximation $\Rightarrow \Theta=\sum_{i=1}^{A} z_{i} \frac{1+\tau_{i, z}}{2}$,

$$
\Rightarrow \quad \sigma_{\gamma}(\omega)=4 \pi^{2} \alpha R(\omega) \quad \text { with } \quad R(\omega)=f_{f}|<f| \Theta|0>|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

with $\mid 0>$ and E_{0} bound-state wave function and energy |f> and E_{f} final-state wave function and energy

Possible np final states: ${ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{~F}_{2}$
Radial part of LIT function is expanded in N Laguerre polynomials times an exponential fall-off

Consider only transitions to the ${ }^{3} \mathrm{P}_{1}$ np final state.

Consider only transitions to the ${ }^{3} \mathrm{P}_{1}$ np final state. This leads to the following LITs:

Consider only transitions to the ${ }^{3} \mathrm{P}_{1}$ np final state. This leads to the following LITs:

NTSE13 - May 13-17, 2013

NTSE13 - May 13-17, 2013

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{I}\right)$ for $\sigma_{I}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{I}\right)$ for $\sigma_{I}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response: δ-function is replaced by Lorentzian with small σ_{1}

$$
R(\omega)=\sum_{v}^{N} r_{v}^{\prime} L\left(\omega, \varepsilon_{v}^{N}, \sigma_{I}\right)
$$

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{I}\right)$ for $\sigma_{I}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response: δ-function is replaced by Lorentzian with small σ_{1}

$$
R(\omega)=\sum_{v}^{N} r_{v}^{\prime} L\left(\omega, \varepsilon_{v}^{N}, \sigma_{I}\right)
$$

Deuteron photodisintegration:
Consider all three transitions ${ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}-{ }^{3} F_{2}$ now expansion of radial LIT part in HO functions

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{I}\right)$ for $\sigma_{I}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response: δ-function is replaced by Lorentzian with small σ_{1}

$$
R(\omega)=\sum_{v}^{N} r_{v}^{\prime} L\left(\omega, \varepsilon_{v}^{N}, \sigma_{I}\right)
$$

Deuteron photodisintegration:
Consider all three transitions ${ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{~F}_{2}$ now expansion of radial LIT part in HO functions
NN potential: JISP6
$\sigma_{\gamma}(\omega)$ from inversion and Lanczos response "true"

$$
\sigma_{1}=1 \mathrm{MeV}
$$

$\sigma_{\gamma}(\omega)$ from inversion and Lanczos response

Conclusion

Strength for a given discrete state of energy E is not the actual strength for this energy, but can only be interpreted correctly within an integral transform approach.

The correct distribution of strength is obtained via the inversion of the integral transform.

O^{+}resonance in longitudinal response function R_{L} in ${ }^{4} \mathrm{He}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$
 S. Bacca, N. Barnea, WL, G. Orlandini, PRL 110, 042503 (2013)

0+ Resonance in the ${ }^{4} \mathrm{He}$ compound system

Resonance at $E_{R}=-8.2 \mathrm{MeV}$, i.e. above the ${ }^{3} \mathrm{H}$-p threshold. Strong evidence in electron scattering off ${ }^{4} \mathrm{He}$

G. Köbschall et al., NPA 405, 648 (1983)

Results of our LIT calculation

May 13-17, 2013

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

Of course not by taking the strength to the discretized state, but by rearranging the inversion in a suitable way:

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

Of course not by taking the strength to the discretized state, but by rearranging the inversion in a suitable way:

Reduce strength to the state up to the point that the inversion does not show any resonant structure at the resonance energy $\mathrm{E}_{\mathbf{R}}$:
$\operatorname{LIT}\left(\sigma_{R}, \sigma_{I}\right) \rightarrow \operatorname{LIT}\left(\sigma_{R}, \sigma_{I}\right)-f_{R} /\left[\left(E_{R}-\sigma_{R}\right)^{2}+\sigma_{I}^{2}\right] \equiv \operatorname{LIT}\left(\sigma_{R}, \sigma_{I}, f_{R}\right)$
with resonance strength f_{R}

Inversion results with different f_{R} values AV18+UIX, q=300 MeV/c

Comparison to experimental results

LIT/EIHH Calculation for AV18+UIX and Idaho-N3LO+N2LO
Dotted: AV8' + central 3NF (Hiyama et al.)

Summary

Ab initio calculations of reactions far into the continuum can be made with the LIT approach

Important: It is a method with a controlled resolution

LIT - Inversion

Standard LIT inversion method

Take the following ansatz for the response function $R(\omega)$ (or $F_{f i}\left(E, E^{\prime}\right)$)

$$
R\left(\omega^{\prime}\right)=\Sigma_{m=1}^{M_{\max }} c_{m} \chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)
$$

with $\omega^{\prime}=\omega-\omega_{\mathrm{th}}$, given set of functions χ_{m}, and unknown coefficients c_{m}
Define:

$$
\tilde{\chi}_{m}\left(\sigma_{R}, \sigma_{I}, \alpha_{i}\right)=\int_{0}^{\infty} d \omega^{\prime} \frac{\chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)}{\left(\omega^{\prime}-\sigma_{R}\right)^{2}+\sigma_{I}^{2}}
$$

Take calculated LIT $L\left(\sigma_{R}, \sigma_{I}\right)=\langle\tilde{\psi} \mid \widetilde{\psi}\rangle$ for many σ_{R} and fixed σ_{I}

$$
\text { and expand in set } \tilde{\chi}_{m}: \quad L\left(\sigma_{R}, \sigma_{I}\right)=\Sigma_{m=1}^{M_{\text {max }}} c_{m} \tilde{\chi}_{m}\left(\omega^{\prime}, \alpha_{i}\right)
$$

Determine C_{m} via best fit

Increase $M_{\max }$ up to the point that stable result is obtained for $R(\omega)$. Even further increase of $M_{\max }$ might lead to oscillations in $R(\omega)$

As basis set χ_{m} we normally use

$$
\chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)=\left(\omega^{\prime}\right)^{\alpha_{1}} \exp \left(-\alpha_{2} \omega^{\prime} / m\right)
$$

Determination of resonance strength f_{R}

Include in the inversion a basis function with resonant structure

$$
\chi_{1}\left(E^{\prime}\right)=1 /\left[\left(E_{R}-E^{\prime}\right)^{2}+\Gamma^{2} / 4\right]
$$

and check inversion result.

