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IntroductionIntroduction

Consider an observable Consider an observable R(E) R(E) and an integral transform and an integral transform (())::

(() ) ==∫∫dE K(dE K(,E) ,E) R(E)R(E)

with some kernel K(with some kernel K(,E),E)

Often it is easier to calculate Often it is easier to calculate (() ) than than R(E).R(E). Then the observable  Then the observable 
R(E)R(E) can be obtained via inversion of the integral transform.  can be obtained via inversion of the integral transform. 

In order to make the inversion sufficiently stable the kernel K(In order to make the inversion sufficiently stable the kernel K(,E) ,E) 
should resemble a kind of energy filter (Lorentzians, should resemble a kind of energy filter (Lorentzians, 
Gaussians, ...); best choice would be a Gaussians, ...); best choice would be a -function. -function.     
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For the LIT  we consider Lorentzians:  K(,E) = [(E-

R
)2 + 

I

2]-1 
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LITLIT -  Inclusive Reactions -  Inclusive Reactions

1. Solve for many 
0
 and fixed Γ

Cross section described by response functions R(ω)
∫

Electron scattering: longitudinal 
(R

L
) and transverse (R

T
) 

responses with nuclear charge 
and current operators, respectively
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2. Calculate

for a Theorem based on closure

3. Invert transform

ω
0

Γ



for given


0
 and 
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2. Calculate

for a Theorem based on closure

3. Invert transform

ω
0

Γ



for given


0
 and 

Normally we replace


0
 by 

R
 and  by 

I
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main point of the LITmain point of the LIT : :
Schrödinger-like equation with a source

one can apply bound state methods

The         solution is unique and has bound state like  
asymptotic behavior
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Reformulation of the LITReformulation of the LIT

LIT(LIT(RR,,II) = ) = ImIm{{00||†† ( (R R + E+ E
0 0 –– H +  H + i i II))

-1-1   | |00  }}
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Reformulation of the LITReformulation of the LIT

LIT(LIT(RR,,II) = ) = ImIm{{00||†† ( (R R + E+ E
0 0 –– H +  H + i i II))

-1-1   | |00  }}

                      with calculation via Lanczos algorithmwith calculation via Lanczos algorithm

The LIT method seems to consist in a discretization of the continuum. 
However, this is not the proper interpretation, since the result can only 
be used correctly within an integral transform approach
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First case: Transverse response function R
T
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3He in the quasi-elastic region 
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First case: Transverse response function R
T
(q,) of 

3He in the quasi-elastic region 

Nuclear current operator includes besides the usual non-relativistic one-body  
currents also meson exchange currents  and -isobar currents as well as 
relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame (P
T
=−Aq/2) and subsequent 

transformation to laboratory system

Calculation of bound state wave function and solution of  LIT equation with 
the help of expansions in correlated  hyperspherical harmonics

Nuclear force model: Argonne v18 NN potential and Urbana 3NF  

Nuclear force model:  
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Experimental data:
Bates, Saclay,
world data (J. Carlson et al.)

L. Yuan et al., PLB 706, 90 (2011)
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Strong  effects in T=3/2 channel
beyond the peak

 
for this kinematics effects are
important in 3-body breakup 
reactions
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Next case: Longitudinal response function Next case: Longitudinal response function 
RR

LL
(q,(q,) of ) of 44HeHe at low q at low q  
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SURPRISE:
LARGE EFFECT OF 

3-BODY FORCE 
AT LOW q

44HeHe

S.Bacca et al., PRL 102, 162501

(e,e') Longitudinal Response(e,e') Longitudinal Response

data: Buki et al.

Calculation via EIHH 
with force model: 
AV18 + UIX
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Dependence on different 3-nucleon forces

S.Bacca et al., PRC 80, 064001
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Resolution of the LIT approachResolution of the LIT approach
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Resolution of the LIT approachResolution of the LIT approach

The LIT approach is a method with a The LIT approach is a method with a 
controlled resolution!controlled resolution!

Let's take deuteron photodisintegration as 
an example
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LIT - Example

deuteron photodisintegration in unretarded dipole approximation

unretarded dipole approximation   = 
i=1

 z
i

1+
i,z

2

A

        

() = 42 α R()     with     R() = 

f
 |<f| |0>|2 (-E

f
-E

0
) ∫

with   |0>  and E
0  

bound-state wave function and energy

|f>  and E
f   

final-state wave function and  energy

Z
i 
, 

i,z
: 3rd componts 

of position and 
isospin coordinates

,
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0
 , 3P

1
 , 3P

2
 - 3F

2
   

Radial part of LIT function is expanded in  N Laguerre polynomials times 
an exponential fall-off
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Consider only transitions to the 3P
1
 np final state.  
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Lanczos response

Since the Lorentzian function is a representation of the -function one 

could think of calculating R() as the limit of L(ω,σ
R
,σ

Ι
)  for  σ

Ι
 −−> 0. 

  The extrapolation would give 

R(ω) =  Σ

 r

 
δ(ω – ε


)N N
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I
)NN

Deuteron photodisintegration:
Consider all three transitions  3P

0
 , 3P

1
 , 3P

2
 – 3F

2

 now expansion of radial LIT part in HO functions
 NN potential: JISP6
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() from inversion and Lanczos response

     

=1 MeV

“true”

N
ho

=150

N
ho

=2400
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() from inversion and Lanczos response

HO  basis:
fixed Ν

HO
=2400 

“true”

Γ=1 MeV

Γ=0.25  MeV

Γ= 0.5 MeV
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Conclusion

Strength for a given discrete state of energy E is not the 
actual strength for this energy, but can only be 
interpreted correctly within an integral transform 
approach. 

The correct distribution of strength is obtained via the
inversion of the integral transform.
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OO++ resonance in longitudinal response  resonance in longitudinal response 
function Rfunction R

LL
 in  in 44He(e,e') He(e,e') 

S. Bacca, N. Barnea, WL, G. Orlandini, PRL 110, 042503 (2013)S. Bacca, N. Barnea, WL, G. Orlandini, PRL 110, 042503 (2013)  
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0+ Resonance in the 
4He compound system

Resonance at ER = -8.2 MeV, i.e. above 

the 3H-p threshold. Strong evidence in 
electron scattering off 4He

G. Köbschall et al., NPA 405, 648 (1983)

= 270±70 keV
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Results of our LIT calculationResults of our LIT calculation
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i =0.001 MeVI = 0.001 MeV
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i =0.001 MeVI = 0.001 MeV

I = 1 MeV
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i =0.001 MeVI = 0.001 MeV

I = 1 MeV

I = 5 MeV
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The present precision of the calculation does not 
allow to resolve the shape of the resonance, 
therefore the width cannot be determined.
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The present precision of the calculation does not 
allow to resolve the shape of the resonance, 
therefore the width cannot be determined.

However, the strength of the resonance can be 
determined!

Of course not by taking the strength to the discretized 
state, but by rearranging the inversion in a suitable way:

Reduce strength to the state up to the point that
the inversion does not show any resonant structure at the
resonance energy ER:

LIT(
R


   LIT(

R
) -fR  / [(ER –

R
)2  

] ≡ LIT(
R


fR

with resonance strength fR
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fR
0.028
0.0295
0.0290

Inversion results with 
different fR values
AV18+UIX, q=300 MeV/c
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Comparison to experimental resultsComparison to experimental results

Frosch et al.
Walcher
Kӧbschall et al.

LIT/EIHH Calculation for AV18+UIX and  Idaho-N3LO+N2LO

Dotted: AV8' + central 3NF (Hiyama et al.)
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SummarySummary

Ab initio calculations of reactions far into the Ab initio calculations of reactions far into the 
continuum can be made with the LIT approachcontinuum can be made with the LIT approach

ImportantImportant: It is a method with a controlled resolution: It is a method with a controlled resolution
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LIT - Inversion

Standard LIT inversion method

Take the following ansatz for the response function  R(ω) (or FF
fifi
(E,E'))(E,E'))

R(ω') = 
m=1

 c
m
 χ

m
(ω',

i
)

M
max

with  ω'=ω-ω
th  

, given set of functions
  
χ

m  
, and unknown coefficients c

m
  

Define:       χ
m
(σ

R
,σ

Ι
,

i
) = ∫

0
  dω' 

∞ χ
m
(ω',

i
)

(ω'- σ
R
)2 +σ

Ι
2

~

Take calculated LIT   L(σ
R
,σ

Ι
) = <|   for many σ

R 
and fixed σ

Ι
 

~ ~

~~ and expand in set χ
m
:   L(σ

R
,σ

Ι
) = 

m=1
 c

m
 χ

m
(ω',

i
)  

M
max

Determine c
m
 via best fit 
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Increase M
max

 up to the point that stable result is obtained

for R(ω). Even further increase of M
max 

might lead to oscillations

in R(ω)

As basis set χ
m 

we normally use

χ
m
(ω',

i
) = (ω') exp(-

2
ω'/m)1
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Determination of resonance strength fR

Include in the inversion a basis function with resonant structure

                                        


1
(E') = 1  / [(ER –E')2  ]

and check inversion result.
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