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• Outline

Fock space and its truncation

Wick-Cutkosky model.

Yukawa Model

Two-body truncation.

Three-body truncation.

E.M. form factors and anomalous magnetic moment.

Conclusion.
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• Field theory

Main features:

Infinite number degrees of freedom.

The number of particles is not conserved.

Interaction: (fermion – spinless meson):

H int = gψ̄ψΦ

fbar fbar

ff

f f

bb

b
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• Approximating by finite d.o.f.

Lattice calculations

Calculating large-dimensional integrals.

Truncated Fock decomposition.

Solving large system of equations.

Both require supercomputers!
Truncated Fock decomposition. –For first non-trivial
truncation has been already solved at laptop.
-Aim of this talk.
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• State vector

The state vector is represented as the (exact) Fock
decomposition:

|p〉 =















ψ1

ψ2

. . .

ψN

. . .















Approximation: replace this infinite column by the finite
(truncated) one.

State vector is defined on LF and it is calculated in LFD.

An alternative to the lattice calculations?
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• Eigenvalue equation:

H |p〉 =M |p〉

It results in a system of equations for the Fock
components ψn.
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
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The coupling constant α in H int may be large. After
truncation, the numerical solution of the system of

equations is non-perturbative.

The solution requires renormalization.
NTSE-2013 – p. 6/43



• Can it converge enough fast?

This can be checked in a simple solvable model
(Wick-Cutkosky model).

Dae Sung Hwang and V.A. Karmanov,

Many-body Fock sectors in Wick-Cutkosky model,

Nucl. Phys. B696 (2004) 413.
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• Wick-Cutkoski modeel

n=2n=3n=4n=3n=2

Spinless particles, massless exchanges.

The ladder graphs only (however, including all the
stretched boxes). No self-energy, no divergences.

However, many-body intermediate states, up to infinity,
are taken into account.

One can compare with truncated calculation.
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• Normalization integral

〈p|p〉 = 1 =

∫

ψ2

2 . . .+

∫

ψ2

3 . . .+

∫

ψ2

4 . . .+· · · = N2+N3+N4+· · ·

Take huge coupling constant: α = 2π (when αQED = 1

137
)

Then, 2- and 3-body sectors dominates:

N2 N3 Nn≥4 N2 +N3 +Nn≥4

9/14=64% 26% 10% 100%

The result is non-perturbative:
–Infinite series in terms of (large) coupling constant.
–Finite number of intermediate states.

Similar hierarchy takes place for e.m. form factors.
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• Competition:

Coupling constant – energy

Coupling constant: α = g2

16πm2 .

n exchanged particles in intermediate state:

M ∼
αn

E −
∑n

i=1
Ei

If α > 1 (α→ 2π), then αn is large.

But
∑n

i=1
Ei is also large.
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• The approach is promissing!

Being developed enough, it might form an alternative to
the lattice calculations.

General advantage:
knowing state vector (LF wave functions), we can

calculate any observable. – Advocated by S. Brodsky.

Particular profit:
Minkowski space, wave functions, form factors, etc.

Yukawa model plays role of a testing area.
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• Yukawa model and QED

St. Glazek

R. Perry
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Bare masses basis m0 → m

S. Chabysheva

J.R. Hiller
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Coupled-cluster method

J. Vary et al. (ISU)
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∣Harmonic oscillator basis
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• Explicitly covariant LFD

V.A. Karmanov, JETP, 44 (1976) 201.
J. Carbonell, B. Desplanques, V.A. Karmanov,
J.-F. Mathiot, Phys. Reports, 300 (1998) 215.

t+ z = 0 → ω·x = ω0t− ~ω·~x
where ω = (ω0, ~ω) such that ω2 = 0.

The unit vector ~n = ~ω
|~ω| determines the orientation of the

light-front plane.

Particular case: ω = (1, 0, 0,−1)
corresponds to the standard approach.
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• Yukawa Lagrangian

L = Lfree + Lint

Free Lagrangian:

Lfree = iΨ̄γµ∂µΨ−mΨ̄Ψ +
1

2

[

∂µΦ∂
µΦ− µ2Φ2

]

Interaction Lagrangian:

Lint = g0Ψ̄ΨΦ + δmΨ̄Ψ,

+ 1 PV fermion and 1 PV boson.
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• Two-body truncation

g
02.m

2

+
11

=

g02

1

=
2

System of equation for physical and Pauli-Villars particles
(one PV fermion and one PV boson).
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• Two-body wave function

Spin structure

ū(k)Γ2u(p) = ū(k)

[

b1 +
m 6ω

ω·p
b2

]

u(p)

Two spin components b1, b2.

For two-body truncation b1 = const, b2 = 0.
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• Renormalization condition

b
1 g

f
f

b

b1 = g

Since it is just the interaction vertex ffb.

δm2 is found as an eigenvalue.
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• Two-body solution

ψ1 =
1

2m
b1 = g, b2 = 0.

g202 =
g2

1− I2
, δm2 = g202Σ( 6p = m)

Comment:

g02, δm2: index "0" means "bare", index "2" means
"found in the 2-body truncation".
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• Three-body truncation

System of equations
ppp .m

2

g
03+

i'
1

1

=

g
02

3

+

.m
2

+
1

g
03

=
2

g
02

g
02

222
1

22
11

+
3

=
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• Infinite set of irreducible graphs

Example: Three-body self-energy
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• Consequences

All the orders of perturbation decomposition in the
degrees of g.

For given order of g – not full set of perturbative graphs.

Infinities, after renormalization, are not cancelled.
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• Three-body truncation

System of equations
ppp .m
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• Sector-dependent counter terms

To provide cancellations of infinities

R. Perry, A. Harindranath, K. Wilson,
Phys. Rev. Lett. 24 (1990) 2959.

Our practical realization of this scheme.

V.A. Karmanov, J.-F. Mathiot, A.V. Smirnov,

Phys. Rev. D77 (2008) 085028.
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• Determining counter terms

δm2, g02 are determined in two-body sector:

δm2 = Σ(p = m), g202 =
g2

1− g2Ī2

They kill infinities in the two-body sector.

The known δm2, g02 are inserted in the two-body states of

three-body sectors.

In addition, there are δm3, g03 in the three-body states of

three-body sectors.

δm3, g03 are determined in from the remormalization conditions

in three-body sector.

They should kill infinities in the three-body sector.
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• Renormalization condition

Reminder: ū(k)Γ2u(p) = ū(k)

[

b1 +
m 6ω

ω·p
b2

]

u(p)

On energy shell s = m2 we should impose:

1. b1(s = m2) = g (relation between g03 and g)

2. b2(s = m2) = 0 (kills ω-dependence in Γ2).

3. M = mphys (determines δm3.)

To satisfy 2., we introduce the ω-dependent counter term by

g03 → g03 +
m 6ω

ω·p
Zω
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• x-dependent counter terms

However: s = (k1 + k2)
2 =

k2
⊥
+ µ2

x
+
k2
⊥
+m2

1− x
= m2

This means k2⊥ = −x2m2 − (1− x)µ2 < 0

(non-physical x -dependent value)

Renormalization condition:

b
i=0,j=0
1 (g03; k⊥(x), x) = g, k⊥(x) = i

√

x2m2 − (1− x)µ2

b
i=0,j=0
1 (g03; k⊥(x), x) depends on x because of truncation.

The same for the ω-dependent counter term: Zω = Zω(x)

to make b
i=0,j=0
2 (k⊥, x) = 0 at s = m2, for any x.

NTSE-2013 – p. 26/43



• Sector and x-dependent counter terms
St. Glazek, A. Harindranath, S. Pinsky, J. Shigemitsu, and K.

Wilson, Phys. Rev. D 47, 1599 (1993).

In the initial Hamiltonian, the counter terms do not depend on the

Fock sectors and kinematical variables.

Making truncation, we replace the initial Hamiltonian by a finite

matrix.

The counter terms naturally depend on the dimension of matrix

(sector dependence) and on kinematical variables

(x-dependence).

Inspite of that, the counter terms are found absolutely

unambiguously.

They (hopefully) provide finite results after non-perturbative

renormalization.
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• New components

A few technical details.

Introduce, for convenience:

bij
1

=
mi

m
hji ,

bij
2

=
mi

m

Hj
i − (1− x+ mi

m )hji
2(1− x)

.
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• Renormalized equations

h
j
0
(R⊥, x) = ηg + g′2

[

K
j
1
h
j
0
(R⊥, x) +K

j
2
h
j
1
(R⊥, x)

]

+ g′2i
j
0
(R⊥, x),

h
j
1
(R⊥, x) = g′

2
[

−K
j
3
h
j
0
(R⊥, x) +K

j
4
h
j
1
(R⊥, x)

]

+ g′
2
i
j
1
(R⊥, x),

H
j
0
(R⊥, x) = ηg(2− x) + g′

2
[

K
j
1
H

j
0
(R⊥, x) +K

j
2
H

j
1
(R⊥, x)

]

+ g′
2
I
j
0
(R⊥, x),

H
j
1
(R⊥, x) = ηg + g′2

[

−K
j
3
H

j
0
(R⊥, x) +K

j
4
H

j
1
(R⊥, x)

]

+ g′2I
j
1
(R⊥, x),

ij(R⊥, x), Ij(R⊥, x) are 2D integrals.

We solve them numerically (at laptop) and find the

Fock components.

Knowing the Fock components (wave functions),

we calculate e.m. form factors.
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• EM form factors

1- and 2-body components are found from equations
(model-dependent).

3-body components g1−4 are expressed through 2-body
components (model-dependent).

Form-factors are expressed through 1-, 2- and 3-body
components (model-independent).

q

q

+

+

q

1-, 2- and 3-body contributions in EM form factors
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• Form factor F1
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• Anomalous magnetic moment
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• Adding antifermion (fff̄ )

x-dependent counter term Zω(x)
Dashed line – without fff̄ . Solid line – with fff̄ .
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• Bare coupling constant g03(x)

δg03(x) = (g03(x)− ḡ03)/ḡ03

Dashed line – without fff̄ . Solid line – with fff̄ .
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• Everything goes in good direction!

Form factors do not depend on the PV masses when
the latter tend to infinity – convergence.

x-dependent counter terms become flat – stop to
depend on x – when we increase the number of
truncated states.
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• Higher Fock sectors (N = 4)

g02

g03

g04

g04

g03

g02

3

=
4

43

+m
2

+
2

=
3

m4

3

++ m
32

pp

p pp

1

=
2

1 21

+=

System of equations for the vertex functions Γ1−4.
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• Higher Fock sectors (N = 6)

g0

g0

g0

g0

g0

g0

g0

6
g0

+
5

m+
4

=
5

m g0
5

+
4

+
3

=
4

43

+m+
2

=
3

m

3

++ m
2

pp

p pp

1

=
2

1 21

+=

System of equations for the vertex functions Γ1−6.
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• Dimension of problem

N = 2 truncation.

Easily solved analytically.

N = 3 truncation

3-body wf is expressed via 2-body one ψ
σ,σ′

ij (k⊥, x).

16 values of indices i, j, σ, σ′, 8 independent matrix elements.

Two variables k⊥, x (after separating azimutal angle).

We use spline basis: ψ(k⊥, x) =
∑2n+1

j1,j2=0 Sj1(k⊥)Sj2(x)cj1j2

n = 5 or 6 can give enough precision.

Dimension (for n = 5): d = 2× 4× (2n+ 2)2 = 8 · 122 = 1152.

Matrix 1152× 1152 ≈ 1.3 · 106 elements. Solved at laptop.

Two body N = 2, three variables ~k⊥, x = k⊥,x, k⊥,y, x (to avoid

analytical angular integrals): d = 2× 4× (2n+ 2)3 = 13824.
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N = 4 truncation

4-body wf is expressed via 3-body one.

Three body, six variables ~k1,⊥, x1; ~k2,⊥, x2

Dimension (for n = 5):

d = 2× 42 × (2n+ 2)6 = 32 · 126 ≈ 0.95 · 108.

Can be solved at supercomputer. We are solving it at ISU.

n = 4 → d = 3.2 · 107

N = 5 truncation

5-body wf is expressed via 4-body.

Four body, nine variables ~k1,⊥, x1; ~k2,⊥, x2; ~k3,⊥, x3

Dimension (for n = 6): d = 2× 43 × (2n+ 2)9 = 1.6 · 1011.

Can be hardly solved at supercomputer . . .
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• Remark

This counting is true but too straightforward.

Being applied to the Schrödingier equation, it would "demonstrate" that one cannot solve

more than three-body problem. But many body problem with large N is solved,

in particular, at ISU (group of J. Vary).

Raison: simple two-body interaction.

The methods developed at ISU are successfully applied to nuclear theory. We can try

to reformulate and apply these methods to field theory.

Raison: very simple basic interaction. All the Feynman graphs in their full complexity

are made from these simple elements.
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• Conclusion

Non-perturbative approach, based on the truncation of
Fock space, is developed.

Approach is applied to the Yukawa model.

Fock space is truncated up to three-body states,

including state with antifermion (ff f̄ ).

E.M. form factors and anomalous magnetic moment are
calculated.

The results are stable (i.e., they converge) vs. increase
of the meson PV mass.

We should go to higher truncations.
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• Resumé

Progress of the

Nuclear Theory in Supercomputer Era

opens exciting perspectives for a breakthrough in

the field theory.

This activity is inspired and supported by

significant contribution of James Vary.
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Happy Birthday, James!
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