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e Outline

Fock space and its truncation
Wick-Cutkosky model.

Yukawa Model
s Two-body truncation.
s Three-body truncation.

E.M. form factors and anomalous magnetic moment.
Conclusion.
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e Field theory

Main features:

® Infinite number degrees of freedom.
® The number of particles is not conserved.

Interaction: (fermion — spinless meson):

H™ = gynp®
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e Approximating by finite d.o.1.

® |attice calculations
s (Calculating large-dimensional integrals.

® Truncated Fock decomposition.
s Solving large system of equations.

Both require supercomputers!

Truncated Fock decomposition. —For first non-trivial
truncation has been already solved at laptop.

-Aim of this talk.
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e State vector

The state vector is represented as the (exact) Fock
decomposition:

[

=
||

(5

YN

-

/

Approximation: replace this infinite column by the finite

(truncated) one.

State vector is defined on LF and it is calculated in LFD.

An alternative to the lattice calculations?
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¢ Kigenvalue equation:

H |p)

= M |p)

It results in a system of equations for the Fock
components ,,.

[ HY, H
H%?t Hy,
0 ...

\ 0 0

The coupling constant o in H** may be large. After
truncation, the numerical solution of the system of

0
0
HYy )

[ )
V2

\ v )

equations is non-perturbative.

[
V2

v /

NTSE-2013 — p. 6/43



e Can it converge enough fast?

This can be checked in a simple solvable model
(Wick-Cutkosky model).

Dae Sung Hwang and V.A. Karmanov,

Many-body Fock sectors in Wick-Cutkosky model,
Nucl. Phys. B696 (2004) 413.
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e Wick-Cutkoski modeel

Spinless particles, massless exchanges.

The ladder graphs only (however, including all the
stretched boxes). No self-energy, no divergences.

However, many-body intermediate states, up to infinity,
are taken into account.

One can compare with truncated calculation.
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e Normalization integral

<p|p>:1=/¢%...+/¢§...+/zpi...+---:N2+N3+N4+...

Take huge coupling constant: « = 27 (when agep = =)
Then, 2- and 3-body sectors dominates:

Ny N3 Nn24 No + N3 + Nn24
9/14=64% | 26% | 10% 100%

The result is non-perturbative:
—Infinite series in terms of (large) coupling constant.
—Finite number of intermediate states.

Similar hierarchy takes place for e.m. form factors.
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o Competition:

Coupling constant — energy

Coupling constant: o = g

16mm?2 "

n exchanged particles in intermediate state:

&n

B — 2?21 L

If « > 1 (o — 27), then o Is large.
But > ", E; is also large.

M ~
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e The approach is promissing!

Being developed enough, it might form an alternative to
the lattice calculations.

General advantage:
knowing state vector (LF wave functions), we can
calculate any observable. — Advocated by S. Brodsky.

Particular profit:
Minkowski space, wave functions, form factors, etc.

Yukawa model plays role of a testing area.
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e Yukawa model and QED

St. Glazek
R. Perry

S.J. Brodsky

S. Chabysheva
V.A. Franke

J.R. Hiller

G. McCartor
S.A. Paston

E.V. Prokhvatilov

S. Chabysheva

J.R. Hiller

Yukawa model, 2-body truncation

Bare masses basis mg — m

Coupled-cluster method

J. Vary et al. (ISU) H Harmonic oscillator basis
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e Explicitly covariant LFD

V.A. Karmanov, JETP, 44 (1976) 201.
J. Carbonell, B. Desplangues, V.A. Karmanov,
J.-F. Mathiot, Phys. Reports, 300 (1998) 215.

t+2=0 — wzr=wyt—wr
where w = (wp,d) such that w? = 0.

The unit vector 7# = -<- determines the orientation of the

|

light-front plane.

Particular case: w = (1,0,0,—1)
corresponds to the standard approach.
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e Yukawa Lagrangian

[ — £free _|_£int
Free Lagrangian:

- - 1
L7 = i1, 0 = mUV + - [0,20"® — 11?97
Interaction Lagrangian:

L = oD + I,

+ 1 PV fermion and 1 PV boson.
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e Two-body truncation

8 m2 _/\902
= caEE— ) + T

System of equation for physical and Pauli-Villars particles
(one PV fermion and one PV boson).
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e Two-body wave function

Spin structure

u(k)ou(p) = u(k) [61 + —b2] u(p)

Two spin components by, bo.

For two-body truncation b; = const, by = 0.
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¢ Renormalization condition

blzg

Since it is just the interaction vertex f fb.

0ms IS found as an eigenvalue.



e Two-body solution

Comment:

go2, 0mo: Index "0" means "bare”, index "2" means
"found in the 2-body truncation”.
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e Three-body truncation

System of equations

D = ——'J—p om + p—/_\‘gm

F1 Fi' F2
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¢ Infinite set of irreducible graphs

Example: Three-body self-energy

S L TN S
A S e
7

+ ...

Perturbative expansion, in terms of the pion-nucleon
coupling constant ¢, of the nucleon self-energy.
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e Consequences

® All the orders of perturbation decomposition in the
degrees of g.

® For given order of ¢ — not full set of perturbative graphs.

Infinities, after renormalization, are not cancelled.
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e Three-body truncation

System of equations

D = ——'J—p om + p—/_\‘gm

F1 Fi' F2
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e Sector-dependent counter terms

To provide cancellations of infinities

R. Perry, A. Harindranath, K. Wilson,
Phys. Rev. Lett. 24 (1990) 2959.

Our practical realization of this scheme.

V.A. Karmanov, J.-F. Mathiot, A.V. Smirnoy,
Phys. Rev. D77 (2008) 085028.
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¢ Determining counter terms

dms, goo are determined in two-body sector:

g2

_ 921_2

dme = X(p =m), 982 =3
They kill infinities in the two-body sector.
The known dms, ggo are inserted in the two-body states of

three-body sectors.

In addition, there are dms, gos in the three-body states of
three-body sectors.

dms, goz are determined in from the remormalization conditions
In three-body sector.

They should Kill infinities in the three-body sector.
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¢ Renormalization condition

Reminder: a(k)[su(p) = u(k) [61 + —b2] u(p)

On energy shell s = m? we should impose:
1. bi(s =m?) =g (relation between gp3 and g)
2. ba(s =m?) =0 (kills w-dependence in I'y).

3. M = myp,s (determines oms.)

To satisfy 2., we introduce the w-dependent counter term by

T
go3 — go3 + TZw
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e r-dependent counter terms

k2 2 k2 2
However: s = (ki + k2)? = LEH ¢1+m = m?
X — X

2

This means k{ = —z°m* — (1 — z)u? <0

(non-physical x -dependent value)

Renormalization condition:

D= gz ko (), @) = g, ki (z) =iva2m? — (1 —z)u?

b ="7=%(go3; k1 (), z) depends on x because of truncation.

The same for the w-dependent counter term: Z, = Z,(x)
to make b5/~ (k,,z) = 0 at s = m?, for any .
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Sector and r-dependent counter terms

St. Glazek, A. Harindranath, S. Pinsky, J. Shigemitsu, and K.
Wilson, Phys. Rev. D 47, 1599 (1993).

In the initial Hamiltonian, the counter terms do not depend on the
Fock sectors and kinematical variables.
Making truncation, we replace the initial Hamiltonian by a finite
matrix.

The counter terms naturally depend on the dimension of matrix
(sector dependence) and on kinematical variables
(x-dependence).

Inspite of that, the counter terms are found absolutely
unambiguously.
They (hopefully) provide finite results after non-perturbative
renormalization.
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e New components

A few technical details.

Introduce, for convenience:

bl = —p

m; HY — (1 — o + )R

ij
b2
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e Renormalized equations

h(R.,z) = ng + ¢ |[K{Rj(RL,2) + Kih] (R, )] + ¢%(R., )
hi(R.,z) = g% |—KInl (R, x) +Kih{(RL,x)] + g% (R.,2)
HI(R.,z) = ng2—z) + ¢2|KIHI(R. )+ KiHI(R,, 0|+ PRRL)
H{(Ry,z) = ng + g =_K§H3(RJ_733) + KZH{(RJJCU)} + ¢?IH (R, )

i/ (R, ,z), 17 (R ,z) are 2D integrals.
We solve them numerically (at laptop) and find the
Fock components.
Knowing the Fock components (wave functions),
we calculate e.m. form factors.

NTSE-2013 — p. 29/43



e EM form factors

1- and 2-body components are found from equations
(model-dependent).
3-body components g; 4 are expressed through 2-body
components (model-dependent).
Form-factors are expressed through 1-, 2- and 3-body
components (model-independent).

1-, 2- and 3-body contributions in EM form factors
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e Form factor F;

V.A. KARMANOYV, J.-F. MATHIOT, AND A.V. SMIRNOV
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PHYSICAL REVIEW D 86, 085006 (2012)

FIG. 7. Electromagnetic form factor ,(Q?) in the Yukawa model, at 2, = 100, for & = 0.5 (upper left plot), 0.8 (upper right plot),
and « = 1.0 (lower plot). The dotted, dashed, and long-dashed lines are, respectively, the one-, two-, and three-body contributions,
while the solid line is the total result.

Since h!, H! start growing from the characteristic values
E S ) o 1

T Y Y A Y A T D T I T T

The existence of a critical value for the regularization
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e Anomalous magnetic moment

Ab INITIO NONPERTURBATIVE CALCULATION ... PHYSICAL REVIEW D 86, 085006 (2012)
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FIG. 6. The anomalous magnetic moment in the Yukawa model as a function of the PV mass g, for three different values of the
coupling constant, & = 0.5 (upper left plot), 0.8 (upper right plot), and @ = 1.0 (lower plot). The dashed and long-dashed lines are,
respectively, the two- and three-body contributions, while the solid line is the total result.

C. Numerical results We finally show in Fig. 9 the contributions of the

Ares. twioe and three_hody cectare to the narm af the ctate NTSE-2013 — p. 32/43
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o Adding antifermion (f f f)

z-dependent counter term Z,,(x)
Dashed line — without 7 ff.

V.A. KARMANOV, J.-F. MATHIOT. AND A.V. SMIRNOV

10

Solid line — with £ £ f.

PHYSICAL REVIEW D 86, 085006 (2012)
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FIG. 14. x dependence of the counterterm Z/, for & = 0.5 (upper left plot), @ = 0.8 (upper right plot), and a = 1.0 (lower plot),

calculated for g; = 100. The solid (dashed) lines correspond to the results obtained with (without) the fff Fock sector contribution.
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e Bare coupling constant g3(x

6go3(x) = (go3(x) — go3)/go3
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[G. 13. x dependence of the bare coupling constant gf;, calculated relatively to its mean value over the interval x € [0, 1], for

= 0.5 (upper left plot), @ = 0.8 (upper right plot), and @ = 1.0 (lower plot), calculated for u; = 100. The solid (dashed) lines
yrrespond to the results obtained with (without) the fff Fock sector contribution.

Dashed line — without 7 ff.

Solid line — with £ £ f.
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e EKverything goes in good direction!

® Form factors do not depend on the PV masses when
the latter tend to infinity — convergence.

® zx-dependent counter terms become flat — stop to
depend on x — when we increase the number of

truncated states.
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e Higher Fock sectors (/V = 4)

P P P
I r om, I o4
1 1 2
p p
T T Y [ om, T 9os
2 1 2 3
9os
F3 FZ F3 2 F4 02
I I "“-.__902
4 3 .

System of equations for the vertex functions I';_4.
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e Higher Fock sectors (/N = 6)

T T T om T o

T T, T om TS,

T T T om A

System of equations for the vertex functions I'1 _g.
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e Dimension of problem

N = 2 truncation.
Easily solved analytically.

N = 3 truncation
3-body wf is expressed via 2-body one wg’f’(kl, ).
16 values of indices i, j, 0, ¢’, 8 independent matrix elements.
Two variables k| , x (after separating azimutal angle).
We use spline basis: 1(k1,2) = Y2771 Sj, (kL) S), (),
n = 5 Or 6 can give enough precision.
Dimension (forn = 5): d =2 x 4 x (2n + 2)? = 8- 122 = 1152.
Matrix 1152 x 1152 ~ 1.3 - 10° elements. Solved at laptop.

Two body N = 2, three variables k., ,z = ky ., k1 ,, 2 (to avoid
analytical angular integrals): d = 2 x 4 x (2n + 2)3 = 13824.

NTSE-2013 — p. 38/43



N = 4 truncation
4-body wt is expressed via 3-body one.
Three body, six variables k; | ,z1; ka1 , 2
Dimension (for n = 5):
d=2x4%x (2n+2)% =32-12°% ~ 0.95 - 105.
Can be solved at supercomputer. We are solving it at ISU.
n=4-d=32-10"

N = 5 truncation
5-body wt is expressed via 4-body.
Four body, nine variables Ky 1,215 ks 1, T2; ks 1,3

Dimension (forn =6): d =2 x 4% x (2n +2)? = 1.6 - 10*1.

Can be hardly solved at supercomputer ...
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e Remark

This counting is true but too straightforward.
Being applied to the Schrddingier equation, it would "demonstrate” that one cannot solve
more than three-body problem. But many body problem with large NV is solved,
in particular, at ISU (group of J. Vary).
Raison: simple two-body interaction.

L

The methods developed at ISU are successfully applied to nuclear theory. We can try
to reformulate and apply these methods to field theory.

Raison: very simple basic interaction. All the Feynman graphs in their full complexity
are made from these simple elements.
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e Conclusion

Non-perturbative approach, based on the truncation of
Fock space, is developed.

Approach is applied to the Yukawa model.
Fock space is truncated up to three-body states,

including state with antifermion (f f f).

E.M. form factors and anomalous magnetic moment are
calculated.

The results are stable (i.e., they converge) vs. increase
of the meson PV mass.

We should go to higher truncations.
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o Resumé

Progress of the
Nuclear Theory in Supercomputer Era
opens exciting perspectives for a breakthrough in
the field theory.

This activity is inspired and supported by
significant contribution of James Vary.



Happy Birthday, James!
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