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Prelude: analyzing high resolution experimentsCorrelations in nuclear systems
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FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,
final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.

NUCLEAR SCALING

With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus

could only be seen for Q2 > 1 [GeV/c]2 and xB > 1 kinematics [13] as predicted by Frankfurt and Strikman [14]. But

plateaus alone are not evidence for correlations, just evidence that the functional form of the cross section is the same

for the two nuclei; so data was taken the xB > 2 region. By logic, if 1< xB < 2 is a region of two-nucleon correlations,

then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data

have shown roughly the same magnitude for these plateaus as CLAS and shown that there is no Q2 dependence in the

2< Q2 < 4 [GeV/c]2 range [16, 17].

Subedi et al., Science 320, 1476 (2008)

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.

PRL 96, 082501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006

082501-3

Higinbotham, arXiv:1010.4433

Egiyan et al. PRL 96, 1082501 (2006)

What is this vertex?
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SRC interpretation:

NN interaction can scatter 
states with
to intermediate states with  
                   which are 
knocked out by the photon

p1, p2 � kF

How to explain cross sections in terms of 
low-momentum interactions? 

Vertex depends on the resolution!
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1.4 < Q2 < 2.6 GeV 2

Q2 = −q2

xB =
Q2

2mNν

How can nuclear renormalization group technology be used here?



Why the RG is a good thing [S. Weinberg for F. Low Festschrift]

“The method in its most general form can I think be understood as a
way to arrange in various theories that the degrees of freedom that
you’re talking about are the relevant degrees of freedom for the
problem at hand.” and

“You may use any degrees of freedom you like to describe a physical
system, but if you use the wrong ones, you’ll be sorry!”

Improving perturbation theory; e.g., in QCD calculations

Mismatch of energy scales can generate large logarithms
RG: shift between couplings and loop integrals to reduce logs
Nuclear: decouple high- and low-momentum modes

Identifying universality in critical phenomena

RG: filter out short-distance degrees of freedom
Nuclear: evolve toward universal interactions (How?)

Nuclear: simplifying calculations of structure/reactions

RG gains can violate conservation of difficulty!
Use RG scale (resolution) dependence as a probe or tool
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Lowering the resolution for nuclear structure

AV18, Bonn, Reid93 〈k |VAV18|k ′〉

Coupling of low-k /high-k
modes: non-perturbative,
strong correlations, . . .

Remedy: Use RG
to decouple modes
=⇒ low resolution



Lowering the resolution for nuclear structure
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“Vlow k ” Similarity RG

Vlow k : lower cutoff Λi in k , k ′

via dT (k , k ′; k2)/dΛ = 0

SRG: drive H toward diagonal
with flow equation (λ = 1/s1/4)

dHs/ds = [[Gs,Hs],Hs]

Continuous unitary transforms
(cf. running couplings)



Lowering the resolution for nuclear structure
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Evolving three-body force is
an essential part (four-body?)

Three methods now:

harmonic oscillator basis
momentum pw [K. Hebeler]

hyperspherical harmonics
momentum [K. Wendt]
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Lowering the resolution for nuclear structure
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Where does the physics of the
decoupled high-momentum
modes go at low momentum?

Claim: goes to + · · ·
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Local projections [K. Wendt et al., PRC 86, 014003 (2012)]

Vlow k or SRG unitary transformations to soften interactions

Project non-local NN potential: Vλ(r) =
∫

d3r ′ Vλ(r , r ′)

Roughly gives action of potential on long-wavelength nucleons

Central part (S-wave) [Note: The Vλ’s are all phase equivalent!]

Tensor part (S-D mixing) [graphs from K. Wendt]
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Approach to universality (fate of high-q physics)
Run NN to lower λ via SRG =⇒ ≈Universal low-k VNN

Off-Diagonal Vλ(k , 0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
k [fm−1]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

V
λ(k

,0
) [

fm
]

550/600 [E/G/M]
600/700 [E/G/M]
500 [E/M]
600 [E/M]

λ = 5.0 fm−1

1S0
q ≫ λ

Vλ

Vλ

k < λ

k′ < λ

=⇒ C0

q � λ (or λ) intermediate states
=⇒ replace with contact term:

C0δ
3(x− x′)

[cf. Left = · · ·+ 1
2 C0(ψ†ψ)2 + · · · ]

Similar pattern with phenomenological potentials (e.g., AV18)

Preview: ∆Vλ(k , k ′) =
∫

Uλ(k , q)Vλ(q, q′)U†λ(q′, k ′) for k , k ′ < λ, q, q′ � λ

Uλ→K ·Q−→ K (k)[
∫

Q(q)Vλ(q, q′)Q(q′)]K (k ′) with K (k) ≈ 1!
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3NF universality?

Evolve chiral NNLO EFT potentials in momentum plane wave basis
to λ = 1.5 fm−1 [K. Hebeler, Phys. Rev. C85 (2012) 021002]

In one 3-body partial wave, fix one Jacobi momentum (p,q) and plot
vs. the other one:
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3NF universality?

Evolve in discretized momentum-space hyperspherical harmonics
basis to λ = 1.4 fm−1 [K. Wendt, arXiv:1304.1431]

Contour plot of integrand for 3NF expectation value in triton

Local projections of 3NF also show flow toward universal form



Nuclear structure natural with low momentum scale
Softened potentials (SRG, Vlow k , UCOM, . . . ) enhance convergence

Convergence for no-core shell
model (NCSM):

(Already) soft chiral EFT potential
and evolved (softened) SRG
potentials, including NNN

Softening allows importance
truncation (IT) and converged
coupled cluster (CCSD)
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[Roth et al., PRL 109, 052501 (2012)]

Also enables ab initio nuclear reactions with NCSM/RGM [Navratil et al.]



Nuclear structure natural with low momentum scale
R. Roth et al. SRG-evolved N3LO with NNN [PRL 109, 052501 (2012)]

Coupled cluster with interactions H(λ): λ is a decoupling scale
Only when NNN-induced added to NN-only =⇒ λ independent

With initial NNN: predictions from fit only to A = 3 properties

Open questions: red (400 MeV) works, blue (500 MeV) doesn’t!
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Same predictions for λ’s! (issues about NNN resolved by 4N?)



Nuclear structure natural with low momentum scale
But lowering resolution reduces short-range correlations (SRCs)!
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Continuously transformed potential =⇒ variable SRCs in wfs!

Therefore, it is clear that SRCs are very resolution dependent

But what does this mean for high resolution experiments?



Consider high resolution (large Q2) e− scatteringCorrelations in nuclear systems
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FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,
final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.

NUCLEAR SCALING

With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus

could only be seen for Q2 > 1 [GeV/c]2 and xB > 1 kinematics [13] as predicted by Frankfurt and Strikman [14]. But

plateaus alone are not evidence for correlations, just evidence that the functional form of the cross section is the same

for the two nuclei; so data was taken the xB > 2 region. By logic, if 1< xB < 2 is a region of two-nucleon correlations,

then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data

have shown roughly the same magnitude for these plateaus as CLAS and shown that there is no Q2 dependence in the

2< Q2 < 4 [GeV/c]2 range [16, 17].

Subedi et al., Science 320, 1476 (2008)

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.

PRL 96, 082501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006

082501-3

Higinbotham, arXiv:1010.4433

Egiyan et al. PRL 96, 1082501 (2006)

What is this vertex?

k k� q = k − k�

ν = Ek − Ek�

p1

p2

p�1

SRC interpretation:

NN interaction can scatter 
states with
to intermediate states with  
                   which are 
knocked out by the photon

p1, p2 � kF

How to explain cross sections in terms of 
low-momentum interactions? 

Vertex depends on the resolution!

q

p�1

p�2

p�1, p
�
2 � kF

p�2

1.4 < Q2 < 2.6 GeV 2

Q2 = −q2

xB =
Q2

2mNν

How does the resolution of the nuclear states come in?



Parton distributions as paradigm [C. Keppel]

DIS Kinematics 
•  Four-momentum transfer: 

•  Mott Cross Section (c=1): 
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Parton distributions as paradigm [C. Keppel]

Higher the resolution
(i.e. higher the Q2)
more low x partons we
“see”.

So what do we expect F2 as a function of x at
a fixed Q2 to look like?

F2



Parton distributions as paradigm [C. Keppel]

1/3

1/3

1/3

F2(x)

F2(x)

F2(x)

x

x

x

Three quarks
with 1/3 of
total
proton
momentum each.

Three quarks
with some
momentum
smearing.

The three quarks
radiate partons
 at low x.

….The answer depends on the Q2!



Parton vs. nuclear momentum distributions

The quark distribution q(x ,Q2) is
scale and scheme dependent

x q(x ,Q2) measures the share of
momentum carried by the quarks
in a particular x-interval

q(x ,Q2) and q(x ,Q2
0) are related

by RG evolution equations
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Deuteron momentum distribution
is scale and scheme dependent

Initial AV18 potential evolved with
SRG from λ =∞ to λ = 1.5 fm−1

High momentum tail shrinks as
λ decreases (lower resolution)
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Factorization: high-E QCD vs. low-E nuclear
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Separation between long- and
short-distance physics is not
unique =⇒ introduce µf

Choice of µf defines border
between long/short distance

Form factor F2 is independent
of µf , but pieces are not

Q2 running of fa(x ,Q2) comes
from choosing µf to optimize
extraction from experiment

Also has factorization assumptions
(e.g., from D. Bazin ECT* talk, 5/2011)

D. Bazin, Workshop on Recent Developments in Transfer and Knockout Reactions, May 9-13, 2011, Trento, Italy

Conundrum

• Using reactions to study nuclear structure

• One observable, two models

• To extract structure information, need accurate 
reaction model

σ
if

=

∑

|Jf−Ji|≤j≤Jf +Ji

S
if
j σsp

Observable: 
cross section

Structure model: 
spectroscopic factor

Reaction model: 
single-particle
cross section

Is the factorization general/robust?
(Process dependence?)

What does it mean to be consistent
between structure and reaction
models? Treat separately? (No!)

How does scale/scheme
dependence come in?

What are the trade-offs? (Does
simpler structure always mean
much more complicated reaction?)
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Source of scale-dependence for low-E structure
Measured cross section as convolution: reaction⊗structure

but separate parts are not unique, only the combination

Short-range unitary transformation U leaves m.e.’s invariant:

Omn ≡ 〈Ψm|Ô|Ψn〉 =
(
〈Ψm|U†

)
UÔU†

(
U|Ψn〉

)
= 〈Ψ̃m|Õ|Ψ̃n〉 ≡ Õm̃ñ

Note: matrix elements of operator Ô itself between the
transformed states are in general modified:

Om̃ñ ≡ 〈Ψ̃m|O|Ψ̃n〉 6= Omn =⇒ e.g., 〈ΨA−1
n |aα|ΨA

0 〉 changes

In a low-energy effective theory, transformations that modify
short-range unresolved physics =⇒ equally valid states.
So Õmn 6= Omn =⇒ scale/scheme dependent observables.

[Field theory version: the equivalence principle says that only on-shell
quantities can be measured. Field redefinitions change off-shell
dependence only. E.g., see rjf, Hammer, PLB 531, 203 (2002).]

RG unitary transformations change the decoupling scale =⇒
change the factorization scale. Use to characterize and explore
scale and scheme and process dependence!
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All pieces mix with unitary transformation

A one-body current becomes many-body (cf. EFT current):

Ûρ̂(q)Û† = + α + · · ·

New wf correlations have appeared (or disappeared):

Û|ΨA
0 〉 = Û

12C(e, e′p)X

1966 1988 2006

+ · · · =⇒ Z

12C(e, e′p)X

1966 1988 2006

+ α

12C(e, e′p)X

1966 1988 2006

+ · · ·

Similarly with |Ψf 〉 = a†p|ΨA−1
n 〉

Thus spectroscopic factors are scale dependent

Final state interactions (FSI) are also modified by Û

Bottom line: the cross section is unchanged only if all pieces are
included, with the same U: H(λ), current operator, FSI, . . .



How should one choose a scale/scheme?

To make calculations easier or more convergent
QCD running coupling and scale: improved perturbation
theory; choosing a gauge: e.g., Coulomb or Lorentz
Low-k potential: improve CI or MBPT convergence,

or to make microscopic connection to shell model or . . .
(Near-) local potential: quantum Monte Carlo methods work

Better interpretation or intuition =⇒ predictability
SRC phenomenology?

Cleanest extraction from experiment
Can one “optimize” validity of impulse approximation?
Ideally extract at one scale, evolve to others using RG

Plan: use range of scales to test calculations and physics
Use renormalization group to consistently relate scales and
quantitatively probe ambiguities (e.g., in spectroscopic factors)
Match Hamiltonians and operators (EFT) and then use RG



Evolving the SRC explanation of nuclear scalingCorrelations in nuclear systems

A!1A

q
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q

e e

e’ e’

a) b)
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N
N

FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,
final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.

NUCLEAR SCALING

With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus

could only be seen for Q2 > 1 [GeV/c]2 and xB > 1 kinematics [13] as predicted by Frankfurt and Strikman [14]. But

plateaus alone are not evidence for correlations, just evidence that the functional form of the cross section is the same

for the two nuclei; so data was taken the xB > 2 region. By logic, if 1< xB < 2 is a region of two-nucleon correlations,

then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data

have shown roughly the same magnitude for these plateaus as CLAS and shown that there is no Q2 dependence in the

2< Q2 < 4 [GeV/c]2 range [16, 17].

Subedi et al., Science 320, 1476 (2008)

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.

PRL 96, 082501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006

082501-3

Higinbotham, arXiv:1010.4433

Egiyan et al. PRL 96, 1082501 (2006)

What is this vertex?

k k� q = k − k�

ν = Ek − Ek�

p1

p2

p�1

SRC interpretation:

NN interaction can scatter 
states with
to intermediate states with  
                   which are 
knocked out by the photon

p1, p2 � kF

How to explain cross sections in terms of 
low-momentum interactions? 

Vertex depends on the resolution!

q

p�1

p�2

p�1, p
�
2 � kF

p�2

1.4 < Q2 < 2.6 GeV 2

Q2 = −q2

xB =
Q2

2mNν

Instead of inclusive cross section, look at momentum distributions



Deuteron-like scaling at high k used to explain plateaus

Deuteron vs Complex Nuclei         
at high momentum region 

C. Ciofi and S. Simula, Phys.Rev C53, 1689(1996) 

n(k) at high Momentum regions are 
similar to it of the Deuteron 

Momentum Distributions n(k) Ratio to the Deuteron 

2H 

3He,4He,16O, 
56Fe and N.M. 

Almost Flat! 
High resolution: Dominance of VNN and SRCs (Frankfurt et al.)

Lower resolution =⇒ lower separation scale =⇒ fall-off depends on Vλ



Changing the factorization scale with RG evolution
Conventional analysis has (implied) high momentum scale

Based on potentials like AV18 and one-body current operator

nA(k) � CA nD(k)

0 1 2 3 4

k [fm
−1

]

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

n
(k

) 
 [

fm
3
]

AV18
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CD-Bonn

N
3
LO (500 MeV)

[From C. Ciofi degli Atti and S. Simula]

With RG evolution, probability of high momentum decreases, but

n(k) ≡ 〈A|a†kak|A〉 =
(
〈A|Û†

)
Ûa†kakÛ†

(
Û|Ψn〉

)
= 〈Ã|Ûa†kakÛ†|Ã〉

is unchanged! |Ã〉 is easier to calculate, but is operator too hard?



Operator flow in practice [e.g., see arXiv:1008.1569]

Evolution with s of any
operator O is given by:

Os = UsOU†s

so Os evolves via

dOs

ds
= [[Gs,Hs],Os]

Us =
∑

i |ψi (s)〉〈ψi (0)|
or solve dUs/ds flow

Matrix elements of evolved
operators are unchanged

Consider momentum
distribution < ψd |a†qaq |ψd >

at q = 0.34 and 3.0 fm−1

in deuteron
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N3LO unevolved
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(a✝

qaq) deuteron



High and low momentum operators in deuteron
Integrand of (Ua†qaqU†) for q = 0.34 fm−1

Integrand for q = 3.02 fm−1

Momentum
distribution
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N3LO unevolved
λ = 2.0 fm−1

λ = 1.5 fm−1

(a✝

qaq) deuteron

One-body operator does not evolve (for “standard” SRG)

Induced two-body operator ≈ regularized delta function:



High and low momentum operators in deuteron
Integrand of 〈ψd | (Ua†qaqU†) |ψd〉 for q = 0.34 fm−1

Integrand for q = 3.02 fm−1

Momentum
distribution
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Decoupling =⇒ High momentum components suppressed

Integrated value does not change, but nature of operator does

Similar for other operators:
〈
r2
〉
, 〈Qd 〉, 〈1/r〉

〈 1
r

〉
, 〈GC〉, . . .



U-factorization with SRG [Anderson et al., Bogner and Roscher]
U-factorization: Uλ(k ,q)→ Kλ(k)Qλ(q) when k < λ and q � λ

Cf., operator product expansion for nonrelativistic wf’s (see Lepage)

Ψ∞α (q) ≈ γλ(q)

∫ λ

0
p2dp Z (λ)Ψλ

α(p) + ηλ(q)

∫ λ

0
p2dp p2 Z (λ) Ψλ

α(p) + · · ·

Construct unitary transformation to get Uλ(k ,q) ≈ Kλ(k)Qλ(q)

Uλ(k , q) =
∑
α

〈k |ψλα〉〈ψ∞α |q〉 →
[αlow∑
α

〈k |ψλα〉
∫ λ

0
p2dp Z (λ)Ψλ

α(p)
]
γλ(q) + · · ·

Test of U-factorization:

Uλ(ki , q)

Uλ(k0, q)
→ Kλ(ki )Qλ(q)

Kλ(k0)Qλ(q)
,

so for q � λ⇒ Kλ(ki )
Kλ(k0)

LO−→ 1

Look for plateaus: ki . 2 fm−1. q
=⇒ it works!

Leading order =⇒ contact term! 0 1 2 3 4 5
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U-factorization with SRG [Anderson et al., Bogner and Roscher]
U-factorization: Uλ(k ,q)→ Kλ(k)Qλ(q) when k < λ and q � λ

Cf., operator product expansion for nonrelativistic wf’s (see Lepage)

Ψ∞α (q) ≈ γλ(q)

∫ λ

0
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0
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α(p) + · · ·
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Nuclear scaling from factorization (schematic!)

Factorization: when k < λ and q � λ, Uλ(k ,q)→ Kλ(k)Qλ(q)

nA(q)

nd (q)
=
〈Ã|Ûa†qaqÛ†|Ã〉
〈d̃ |Ûa†qaqÛ†|d̃〉

=
〈Ã|
∫

Uλ(k ′,q′)δq′qU†λ(q, k)|Ã〉
〈d̃ |
∫

Uλ(k ′,q′)δq′qU†λ(q, k)|d̃〉

=⇒ nA(q) ≈ CAnD(q) at large q

nA(k) � CA nD(k)

[From C. Ciofi degli Atti and S. Simula]

Test case: A bosons in toy 1D model
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A=2, 2−body only
A=3, 2−body only
A=4, 2−body only
A=2, PHQ 2−body only, λ=2
A=3, PHQ 2−body only, λ=2
A=4, PHQ 2−body only, λ=2

  Universal 
     p>>λ
dependence
   given by 
      I

QOQ

[Anderson et al., arXiv:1008.1569]

Proof of principle works. Realistic calculations in progress . . .
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Nuclear scaling from factorization (schematic!)

Factorization: when k < λ and q � λ, Uλ(k ,q)→ Kλ(k)Qλ(q)
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nd (q)
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=
〈Ã|
∫

Kλ(k ′)Kλ(k)|Ã〉
〈d̃ |
∫

Kλ(k ′)Kλ(k)|d̃〉
≡ CA

=⇒ nA(q) ≈ CAnD(q) at large q
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Dependence of EMC effect on A is long-distance physics!
EFT treatment by Chen and Detmold [Phys. Lett. B 625, 165 (2005)]

F A
2 (x) =

∑

i

Q2
i xqA

i (x) =⇒ RA(x) = F A
2 (x)/AF N

2 (x)

“The x dependence of RA(x) is governed by short-distance
physics, while the overall magnitude (the A dependence) of
the EMC effect is governed by long distance matrix elements
calculable using traditional nuclear physics.”

Match matrix elements: leading-order nucleon operators to
isoscalar twist-two quark operators =⇒ parton dist. moments

J.-W. Chen, W. Detmold / Physics Letters B 625 (2005) 165–170 167

symmetries [14–17]. The leading one- and two-body
hadronic operators in the matching are

(4)
Oµ0···µn

q =
〈
xn

〉
q
vµ0 · · ·vµnN†N

[
1+ αnN

†N
]
+ · · · ,

where vµ = ṽµ + O(1/M) is the velocity of the
nucleus. Operators involving additional derivatives
are suppressed by powers of M in the EFT power-
counting. In Eq. (4) we have only kept the SU(4) (spin
and isospin) singlet two-body operator αnv

µ0 · · ·×
vµn(N†N)2. The other independent two-body oper-
ator βnv

µ0 · · ·vµn(N†τN)2, which is non-singlet in
SU(4) (τ is an isospin matrix), is neglected because
βn/αn = O(1/N2

c ) " 0.1 [21], where Nc is the num-
ber of colors. Furthermore, the matrix element of
(N†τN)2 for an isoscalar state with atomic num-
ber A is smaller than that of (N†N)2 by a factor A

[10]. Three- and higher-body operators also appear in
Eq. (4); numerical evidence from other EFT calcula-
tions indicates that these contributions are generally
much smaller than two-body ones [22].
Nuclear matrix elements of Oµ0···µn

q give the mo-
ments of the isoscalar nuclear parton distributions,
qA(x). The leading order (LO) and the next-to-leading
order (NLO) contributions to these matrix elements
are shown in Fig. 1(a) and (b), respectively. For an un-
polarised, isoscalar nucleus,

〈
xn

〉
q|A ≡ vµ0 · · ·vµn〈A|Oµ0···µn

q |A〉

(5)=
〈
xn

〉
q

[
A + 〈A|αn

(
N†N

)2|A〉
]
,

where we have used 〈A|N†N |A〉 = A. Notice that if
there were no EMC effect, the αn would vanish for
all n. Also α0 = 0 because of charge conservation. As-
ymptotic relations [23] and analysis of experimental
data [2,24] suggests that α1 " 0, implying that quarks
carry very similar fractions of a nucleon’ and a nucle-
us’ momentum though no symmetry guarantees this.
From Eq. (5) we see that the ratio

(6)
〈xn〉q|A
A〈xn〉q − 1
〈xm〉q|A
A〈xm〉q − 1

= αn

αm

is independent ofAwhich has powerful consequences.
In all generality, the isoscalar nuclear quark distribu-
tion can be written as

(7)qA(x) = A
[
q(x) + g̃(x,A)

]
.

Taking moments of Eq. (7), Eq. (6) then demands that
the x dependence and A dependence of g̃ factorise,

(8)g̃(x,A) = g(x)G(A),

with

(9)G(A) = 〈A|
(
N†N

)2|A〉/AΛ3
0,

and g(x) satisfying

(10)αn = 1
Λ3
0〈xn〉q

A∫

−A

dx xng(x).

Λ0 is an arbitrary dimensionful parameter and will be
chosen as Λ0 = 1 fm−1. Crossing symmetry dictates

Fig. 1. Contributions to nuclear matrix elements. The dark square represents the various operators in Eq. (4) and the light shaded ellipse
corresponds to the nucleus, A. The dots in the lower part of the diagram indicate the spectator nucleons.

=⇒ 〈xn〉qvµ0 · · · vµn N†N[1 + αnN†N] + · · ·

RA(x) =
F A

2 (x)

AF N
2 (x)

= 1+gF2 (x)G(A) where G(A) = 〈A|(N†N)2|A〉/AΛ0

=⇒ the slope dRA
dx scales with G(A) [Why is this not cited more?]



Scaling and EMC correlation via low resolution
SRG factorization, e.g.,
Uλ(k ,q)→ Kλ(k)Qλ(q)
when k < λ and q � λ

Dependence on high-q
independent of A
=⇒ universal [cf. Neff et al.]

A dependence from
low-momentum matrix
elements =⇒ calculate!

EMC from EFT using OPE:

Isolate A dependence, which
factorizes from x
EMC A dependence from
long-distance matrix elements

Short Range Correlations and the EMC effect

Deep inelastic scattering ratio at
Q2 ≥ 2GeV2 and 0.35 ≤ xB ≤ 0.7
and inelastic scattering at
Q2 ≥ 1.4GeV2 and 1.5 ≤ xB ≤ 2.0

Strong linear correlation between
slope of ratio of DIS cross sections
(nucleus A vs. deuterium) and
nuclear scaling ratio

SRG Factorization at leading order:
→ Dependence on high-q

is independent of A
→ A-dependence from low

momentum matrix element
independent of operator

L.B. Weinstein, et al., Phys. Rev. Lett. 106, 052301 (2011)

Why should A-dependence of nuclear scaling a2 and the EMC effect be
the same?

Overview Operators Factorization Conclusions Principles Applications

If the same leading operators dominate, then does linear A
dependence of ratios follow immediately?
Need to do quantitative calculations to explore!



Where should we truncate many-body operators?
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Induced two-body contributions on
bottom =⇒ effect depends on S,T

Three-body needed at higher k

Power counting insight needed!



Apply new technologies to operator evolution

Two examples (also many on-going developments by other groups):
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SRG evolution in plane-wave
momentum basis
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SRG evolution in hyperspherical
harmonics momentum basis



MBPT for evolved operators (in uniform system)

• scaling behavior of momentum distribution functions:

• explained by invoking dominance of two-body interactions and short-range 
correlations in the wave function

• dominance of np pairs over pp pairs at large relative momenta and small 
C.M momenta explained by short-range tensor forces

2

tions is well documented (see Refs. [10, 11] and references
therein), as is the quality of the AV18/UIX Hamiltonian
in quantitatively accounting for a wide variety of light
nuclei properties, such as elastic and inelastic electro-
magnetic form factors [12], and low-energy capture re-
actions [13]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon momen-
tum distributions and the resulting isospin dependence of
the latter remain valid, even if one uses a semi-realistic
Hamiltonian model. This will be shown explicitly below.

The double Fourier transform in Eq. (1) is computed
by Monte Carlo (MC) integration. A standard Metropo-
lis walk, guided by |ψJMJ (r1, r2, r3, . . . , rA)|2, is used to
sample configurations [11]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj , is
used to compute the Fourier transform. Instead of just
moving the ψ′ position (r′

12 and R′
12) away from a fixed

ψ position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

ρTMT (q,Q) =
A(A − 1)

2 (2J + 1)

∑

MJ

∫
dr1 dr2 dr3 · · ·drA dx dXψ†

JMJ
(r12+x/2,R12+X/2, r3, . . . , rA)

× e−iq·x e−iQ·X PTMT (12)ψJMJ (r12−x/2,R12−X/2, r3, . . . , rA) . (3)

Here the polar angles of the x and X grids are also
sampled by MC integration, with one sample per pair.
This procedure is similar to that adopted most recently
in studies of the 3He(e, e′p)d and 4He(#e, e′#p )3H reac-
tions [14], and has the advantage of very substantially re-
ducing the statistical errors originating from the rapidly
oscillating nature of the integrand for large values of q
and Q. Indeed, earlier calculations of nucleon and cluster
momentum distributions in few-nucleon systems, which
were carried out by direct MC integration over all coordi-
nates, were very noisy for momenta beyond 2 fm−1, even
when the random walk consisted of a very large number
of configurations [2].

The present method is, however, computationally in-
tensive, because complete Gaussian integrations have to
be performed for each of the configurations sampled in
the random walk. The large range of values of x and X
required to obtain converged results, especially for 3He,
require fairly large numbers of points; we used grids of
up to 96 and 80 points for x and X , respectively. We
also sum over all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q=0,
corresponding to nucleons moving back to back. The
statistical errors due to the Monte Carlo integration are
displayed only for the pp pairs; they are negligibly small
for the np pairs. The striking features seen in all cases
are: i) the momentum distribution of np pairs is much
larger than that of pp pairs for relative momenta in the
range 1.5–3.0 fm−1, and ii) for the helium and lithium
isotopes the node in the pp momentum distribution is
absent in the np one, which instead exhibits a change of
slope at a characteristic value of p # 1.5 fm−1. The nodal
structure is much less prominent in 8Be. At small val-
ues of q the ratios of np to pp momentum distributions
are closer to those of np to pp pair numbers, which in

3He, 4He, 6Li, and 8Be are respectively 2, 4, 3, and 8/3.
Note that the np momentum distribution is given by the
linear combination ρTMT =10+ρTMT =00, while the pp mo-
mentum distribution corresponds to ρTMT =11. The wave
functions utilized in the present study are eigenstates of
total isospin (1/2 for 3He, and 0 for 4He, 6Li, and 8Be),
so the small effects of isospin-symmetry-breaking inter-
actions are ignored. As a result, in 4He, 6Li, and 8Be
the ρTMT is independent of the isospin projection and,
in particular, the pp and T = 1 np momentum distribu-
tions are the same.

The excess strength in the np momentum distribution
is due to the strong correlations induced by tensor com-
ponents in the underlying NN potential. For Q=0, the
pair and residual (A–2) system are in a relative S-wave.
In 3He and 4He with uncorrelated wave functions, 3/4 of
the np pairs are in deuteron-like T, S=0,1 states, while
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FIG. 1: (Color online) The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.

np pairs

pp pairs

Schiavilla et al. PRL 98, 132501 (2007)

Short-Range Correlations in nuclear systems

nA(p) ≈ CAnD(p) at large p

taken from Ciofi degli Atti, Simula PRC 53, 1689 (1996)

p� + p = Q = 0

p� − p = 2q

Benchmark for finite nuclei: calculation at high resolution

Nuclear scaling and ratio of np/pp pairs



MBPT for evolved operators (in uniform system)

Nuclear scaling at low resolution

U�

simple calculation of pair density at low resolution in nuclear matter: 

Vλ

Vλ

Vλ

Vλ

Vλ

= + + +
�
�(P,q)

⇥

RG transformation of 
pair density operator
(induced many-body 

terms neglected):

                   factorizes into a low-momentum structure and a 
universal high momentum part if the initial operator only 
weakly couples low and high momenta           explains scaling!

�
�
��|O�|��

⇥

MBPT with leading induced operators only [Anderson, Hebeler]



MBPT for evolved operators (in uniform system)SRG evolution of operators in nuclear matter

• approximate invariance of distribution functions with evolved operator

• 3N operator contributions seem small (further investigations necessary)

• significant enhancement of np pairs over nn pairs due to tensor force
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MBPT with leading induced operators only [Anderson, Hebeler]

left: operator evolution restores initial 〈ρ(P = 0,q)〉np

right: ratio of np to nn =⇒ role of tensor



MBPT for evolved operators (in uniform system)SRG evolution of operators in nuclear matter

• approximate invariance of distribution functions with evolved operator

• 3N operator contributions seem small (further investigations necessary)

• significant enhancement of np pairs over nn pairs due to tensor force
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MBPT with leading induced operators only [Anderson, Hebeler]

left: operator evolution restores initial 〈ρ(P = 0,q)〉np

right: ratio of np to nn =⇒ role of tensor

Proof of principle. Next: add three-body and higher-order MBPT



Final comments and questions

Summary (and follow-up) points
Lower resolution =⇒ more natural nuclear structure
While scale and scheme-dependent observables can be
(to good approximation) unambiguous for some systems,
they are often (generally?) not for nuclei. Physics changes!
Scale/scheme includes consistent Hamiltonian and operators.
Be careful of treating experimental analysis in pieces!

Questions for which RG/EFT perspective + tools can help
Can we have controlled factorization at low energies?
How should one choose a scale/scheme?
What is the scheme-dependence of SF’s and other quantities?
What are the roles of short-range/long-range correlations?
How do we match Hamiltonians and operators?
When is the assumption of one-body operators viable?
. . . and many more. Calculations are in progress!



Thanks: collaborators and others at low resolution

Darmstadt: K. Hebeler, R. Roth, A. Schwenk

ANL: L. Platter

Iowa State: P. Maris, J. Vary

Michigan State: S. Bogner, A. Ekström

LLNL: E. Jurgenson, N. Schunck

Ohio State: H. Hergert, S. More,
R. Perry, K. Wendt

ORNL / UofT: G. Hagen, M. Kortelainen,
W. Nazarewicz, T. Papenbrock

TRIUMF: S. Bacca, P. Navratil

UNC: E. Anderson, J. Drut

Warsaw: S. Glazek

many others in UNEDF and NUCLEI



Some on-going calculations to address basic issues

More general treatment of factorization [S. Bogner et al.]

Deuteron electrodisintegration [S. More et al.]

No issues with three-body operators
Do full calculation with final state interactions (FSI)
Evolve with SRG, observe FSI/operator/wf contributions

MBPT for operators: relative momentum distributions
Quantitative scaling factors [E. Anderson, K. Hebeler]

Few-body directly; LDA from infinite mattter MBPT

Many-body operators [E. Anderson, E. Jurgenson, K. Wendt]

Technology for evolution and embedding
Power counting investigations

Variation of spectroscopic factors, single-particle quantities
T. Duguet, rjf, and G. Hagen


