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Congratulations, James! (and thanks)

Context:

@ “New applications of renormalization group methods in nuclear
physics,” rjf, K. Hebeler, arXiv:1305.3800 (just posted review article)



Prelude: analyzing high resolution experiments
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Subedi et al., Science 320, 1476 (2008)
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Egiyan et al. PRL 96, 1082501 (2006)

What is this vertex?

qg=k—k
I/:Ekakr
N Q*=-¢
N @
rp =
2mpyv

A-2
Higinbotham, arXiv:1010.4433

SRC interpretation:

NN interaction can scatter
states with p1,ps < kp

to intermediate states with
Py, ph > kr which are
knocked out by the photon

How to explain cross sections in terms of
low-momentum interactions?
Vertex depends on the resolution!

@ How can nuclear renormalization group technology be used here?



Why the RG is a good thing [S. Weinberg for F. Low Festschrift]

“The method in its most general form can I think be understood as a
way to arrange in various theories that the degrees of freedom that
you're talking about are the relevant degrees of freedom for the

problem at hand.” and

“You may use any degrees of freedom you like to describe a physical
system, but if you use the wrong ones, you'll be sorry!”



Why the RG is a good thing [S. Weinberg for F. Low Festschrift]

“The method in its most general form can I think be understood as a
way to arrange in various theories that the degrees of freedom that
you're talking about are the relevant degrees of freedom for the
problem at hand.”

and
“You may use any degrees of freedom you like to describe a physical
system, but if you use the wrong ones, you'll be sorry!”
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
e RG: shift between couplings and loop integrals to reduce logs
@ Nuclear: decouple high- and low-momentum modes
@ Identifying universality in critical phenomena
o RG: filter out short-distance degrees of freedom
@ Nuclear: evolve toward universal interactions (How?)



Why the RG is a good thing [S. Weinberg for F. Low Festschrift]

“The method in its most general form can I think be understood as a
way to arrange in various theories that the degrees of freedom that
you're talking about are the relevant degrees of freedom for the
problem at hand.”

and
“You may use any degrees of freedom you like to describe a physical
system, but if you use the wrong ones, you'll be sorry!”
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
e RG: shift between couplings and loop integrals to reduce logs
@ Nuclear: decouple high- and low-momentum modes
@ Identifying universality in critical phenomena
o RG: filter out short-distance degrees of freedom
@ Nuclear: evolve toward universal interactions (How?)
@ Nuclear: simplifying calculations of structure/reactions
e RG gains can violate conservation of difficulty!
e Use RG scale (resolution) dependence as a probe or tool
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Lowering the resolution for nuclear structure
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Coupling of low-k/high-k
05 modes: non-perturbative,
(@m) strong correlations, ...

Remedy: Use RG
05 to decouple modes
— low resolution



Lowering the resolution for nuclear structure

k k

@ Viwk: lower cutoff A; in k, k'
via dT(k,k';k?)/dN =0

@ SRG: drive H toward diagonal

~
— with flow equation (x = 1/s'/4)
i D st/dS = [[GSa HS]a Hs]
al Continuous unitary transforms

“Viowk” Similarity RG (cf. running couplings)



Lowering the resolution for nuclear structure

k k

@ Evolving three-body force is
an essential part (four-body?)

AZ
! . @ Three methods now:
o @ harmonic oscillator basis

i B @ momentum pw [K. Hebeler]

Mo e hyperspherical harmonics
“Viowk” Similarity RG momentum [K. Wendit]
Q[fm™]
NNN




Lowering the resolution for nuclear structure

k k

k . = Where does the physics of the
A decoupled high-momentum
0 N modes go at low momentum?
A!
4 N Claim: goes tc><+ e
A
“Viewk” Similarity RG
Q[fm™]
NNN




Local projections [k. wendt et al., PRC 86, 014003 (2012)]
@ Vi,wk or SRG unitary transformations to soften interactions

7 [MeV]

@ Project non-local NN potential: V(r

= [d® Vy(r,r")

@ Roughly gives action of potentlal on long-wavelength nucleons

@ Central part (S-wave) [Note: The V,’s are all phase equivalent!]
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Local projections [k. wendt et al., PRC 86, 014003 (2012)]
@ Vi« Oor SRG unitary transformations to soften interactions
@ Project non-local NN potential: V\(r) = [d®r' V\(r, ")
e Roughly gives action of potential on long-wavelength nucleons
@ Central part (S-wave) [Note: The V,’s are all phase equivalent!]
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@ Tensor part (S-D mixing) [graphs from K. Wendt]
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Approach to universality (fate of high-g physics)

Run NN to lower A via SRG = ~Universal low-k Vi

Off Dlagonal VA(k 0)
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<q > A> Co

/m\

g > ) (or )\) intermediate states
= replace with contact term:
Cod3(x — ')

[ef. Leg =+ %CO(¢T¢)2 +

@ Similar pattern with phenomenological potentials (e.g., AV18)
Preview: AV, (k, k') = fUA k,q)Va(q,q)UL(G, K') for kK" < X\, 9,9 > A
PEEC KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!



Approach to universality (fate of high-g physics)

Run NN to lower A via SRG = ~Universal low-k Vi
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Approach to universality (fate of high-g physics)

Run NN to lower A via SRG = ~Universal low-k Vi

V,(k,0) [fm]
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Approach to universality (fate of high-g physics)

Run NN to lower A via SRG = ~Universal low-k Vi
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Approach to universality (fate of high-g physics)

Run NN to lower A via SRG = ~Universal low-k Vi

Off Diagonal VA(k 0)
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Approach to universality (fate of high-g physics)

Run NN to lower A via SRG = ~Universal low-k Vi
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@ Similar pattern with phenomenological potentials (e.g., AV18)
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3NF universality?

@ Evolve chiral NNLO EFT potentials in momentum plane wave basis
toA=1.5fm~" [K. Hebeler, Phys. Rev. C85 (2012) 021002]

@ In one 3-body partial wave, fix one Jacobi momentum (p, q) and plot
vs. the other one:
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@ Collapse of curves includes non-trivial structure



3NF universality?

@ Evolve in discretized momentum-space hyperspherical harmonics
[K. Wendt, arXiv:1304.1431]

basisto A = 1.4fm™~

1

@ Contour plot of integrand for 3NF expectation value in triton
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@ Local projections of 3NF also show flow toward universal form



Nuclear structure natural with Jow momentum scale

Softened potentials (SRG, Vi x, UCOM, ...) enhance convergence

@ Softening allows importance

@ Convergence for no-core shell truncation (IT) and converged

model (NCSM):
. $ —— )‘ S coupled cluster (CCSD)
16§ E
2 Lithium-6 E %0 [TNeSM €esb
S sE ground-state energy 3 NN+3N-ind. | NN+3N-ind.
g na Jurgenson et al. (2009) 7 -100f,
5 O Vo =N'LO (500 MeV) ] % \
5 -4 N = (500 MeV) 3 Z 00 1 7Q =20MeV
= £ 2 | == ‘
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T 20 . E
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E . . . . . . . k| =-130¢
36 i é a‘a fo 1‘2 1‘4 1‘6 18 3
Matrix Size [N“m] -1400
@ (Already) soft chiral EFT potential sol
and evolved (softened) SRG

24 681012141618 16 14 12 10 8 6 4 2
vvvv €max

[Roth et al., PRL 109, 052501 (2012)]
@ Also enables ab initio nuclear reactions with NCSM/RGM [Navratil et al.]

potentials, including NNN



Nuclear structure natural with Jow momentum scale

R. Roth et al. SRG-evolved N3LO with NNN

[PRL 109, 052501 (2012)]

@ Coupled cluster with interactions H(\): A is a decoupling scale
@ Only when NNN-induced added to NN-only = ) independent

@ With initial NNN: predictions from fit only to A = 3 properties

@ Open questions: red (400 MeV) works, blue (500 MeV) doesn’t!
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@ Same predictions for A's! (issues about NNN resolved by 4N?)



Nuclear structure natural with /ow momentum scale
But lowering resolution reduces short-range correlations (SRCs)!
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@ Continuously transformed potential —> variable SRCs in wfs!
@ Therefore, it is clear that SRCs are very resolution dependent

@ But what does this mean for high resolution experiments?



Consider high resolution (large Q°) e~ scattering
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Subedi et al., Science 320, 1476 (2008)
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What is this vertex?

qg=k—k
I/:Ekakr
N Q*=-¢
N @
rp =
2mpyv

A-2
Higinbotham, arXiv:1010.4433

SRC interpretation:

NN interaction can scatter
states with p1,ps < kp

to intermediate states with
Py, ph > kr which are
knocked out by the photon

How to explain cross sections in terms of
low-momentum interactions?

Vertex depends on the resolution!

@ How does the resolution of the nuclear states come in?



Parton distributions as paradigm [c. Keppel]
DIS Kinematics

X + Four-momentum transfer:
‘ q*=(E-E') -(k-k")(k-k") =
=m>+m?-2(EE'- |k || k'|cosO) =
’ ~ —4EE'sin’¢=-0’

Lepton k=(E.K)

;;;;;;;;;;;;;;;;;;

* Mott Cross Section (7ic=1):
2

do = 4a’E” LE
dQ/ Mott — o* E

- cos %
Nucleon P=(Eg,p)

2502 20
L _ : lepton tensor =40 gt 0.
wr * 1P 16 E*Esin*2 2

1
1+£(1-cos0)

W, : hadron tensor ) 2y
o Cos 2 . 1

48 E (Dqin2
4E%sin I+5(2sin” F)

a virtual photon of four-
momentum q is able to resolve

structures of the order h /\/qz ’ Electron scattering of a spinless point particle




Parton distributions as paradigm [Marco Stratman]
Factorization schemes
pictorial representation of factorization:

hard scale
fucfor‘lzahon

e9. Fa(@Q) ~ Y fala, uf) ® P(z, %)

the separation between long- and short-distance physics is not unique

long-distance < ,\ ﬁ short-distance
parton density P Wilson coefficient
1. choice of p;: defines borderline between long-/short-distance

2. choice of scheme: re-shuffling finite pieces

July, 25-28 2005 PHENIX Spin Fest @ RIKEN Wako 20



Parton distributions as paradigm [Marco Stratman]

Deep-inelastic scattering (DIS)
according to pQCD

the physical structure fct. is independent of
(this will lead to the concept of renormalization group egs.)

both, pdf's and the short-dist. coefficient depend on i
(choice of i shifting terms between long- and short-distance parts)

Fy(z, Qz) ==z ¢ —fa(EQ :)
a=q,q /
[o-? ?‘ ()0
yet another scale: . shorT—dnsTance "Wilson oeffncnenf
due to the renormalization

of ultraviolet divergencies . . .
J choice of the factorization scheme

July, 25-28 2005 PHENIX Spin Fest @ RIKEN Wako 29



Parton distributions as paradigm [c. Keppel]

F2 L x=0.021

Higher the resolution
(i.e. higher the Q?)
more low x partons we

® ZEUS96/97

O H194/97

& Fixed Target
—— NLO QCD Fit
.......... MRST99
----- CTEQSD

So what do we expect F, as a function of x at
a fixed Q2 to look like?



Parton distributions as paradigm [c. Keppel]

Fa(x)

Fa(x)

Fa(x)

1/3 X
\/\ I
/3 X =

Three quarks
with 1/3 of
total

proton
momentum each.

Three quarks
with some
momentum
smearing.

The three quarks
radiate partons
at low x.

...The answer depends on the Q2!



Parton vs. nuclear momentum distributions

24 P
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@ The quark distribution g(x, Q?) is
scale and scheme dependent

@ x g(x, @?) measures the share of
momentum carried by the quarks
in a particular x-interval

@ g(x,@Q?) and q(x, Q?) are related
by RG evolution equations



Parton vs. nuclear momentum distributions
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2542
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@ The quark distribution g(x, Q?) is
scale and scheme dependent @ Deuteron momentum distribution

® x g(x, Q%) measures the share of is scale and scheme dependent

momentum carried by the quarks @ Initial AV18 potential evolved with
in a particular x-interval SRG from A = oo to A = 1.5fm™"

@ g(x, @) and g(x, Q3) are related @ High momentum tail shrinks as
by RG evolution equations A decreases (lower resolution)



Factorization: high-E QCD vs. low-E nuclear

-
o &
hard scale “.

——
factorization
V"’L ‘/LLL

Fa(x, 02)’\“2 fa(X, pif) ® F. (X, Q/ )

long-distance ﬁ short-distance
parton densify Wilson coefficient

@ Separation between Iong- and
short-distance physics is not
unique = introduce uy

@ Choice of i defines border
between long/short distance

@ Form factor F is independent
of uy, but pieces are not

@ @ running of fy(x, Q%) comes
from choosing p+ to optimize
extraction from experiment



Factorization: high-E QCD vs. low-E nuclear

o
' hard scale

oo WL ®__
", factorization

e

Fa(x, Q®) ~ 2, falx. 1) @ F£(x, Q/p1r)

long-distance short-distance
parton density by, Wilson coefficient

@ Separation between long- and
short-distance physics is not
unique = introduce

@ Choice of i defines border
between long/short distance

@ Form factor F is independent
of uy, but pieces are not

@ @ running of fy(x, Q%) comes
from choosing p+ to optimize
extraction from experiment

“4,

@ Also has factorization assumptions

(e.g., from D. Bazin ECT™ talk, 5/2011)

Observable: Structure model: Reaction model:
cross section spectroscopic factor single-particle

\ \ cross section
ol = Z ijﬂ_«,,‘/
[Jp=Ji|<i<Js+Ji
Is the factorization general/robust?
(Process dependence?)

What does it mean to be consistent
between structure and reaction
models? Treat separately? (No!)

How does scale/scheme
dependence come in?

What are the trade-offs? (Does
simpler structure always mean
much more complicated reaction?)



Source of scale-dependence for low-E structure
@ Measured cross section as convolution: reaction ® structure
e but separate parts are not unique, only the combination
@ Short-range unitary transformation U leaves m.e.s invariant:
Omn = (Wim|O[W,) = (WU UOUT (UIW,)) = (W|O|W,) = O
Note: matrix elements of operator O itself between the
transformed states are in general modified:

Oz = (Up|OW,) # Opn = €.9., (WA~ "]a,|Wf) changes



Source of scale-dependence for low-E structure
@ Measured cross section as convolution: reaction ® structure
e but separate parts are not unique, only the combination
@ Short-range unitary transformation U leaves m.e.s invariant:

Omn = (Wim|O[W,) = (WU UOUT (UIW,)) = (W|O|W,) = O

Note: matrix elements of operator O itself between the
transformed states are in general modified:

Oz = (Up|OW,) # Opn = €.9., (WA~ "]a,|Wf) changes

@ In a low-energy effective theory, transformations that modify
short-range unresolved physics — equally valid states.
So Omn # Omp = scale/scheme dependent observables.

@ [Field theory version: the equivalence principle says that only on-shell
quantities can be measured. Field redefinitions change off-shell
dependence only. E.g., see rjf, Hammer, PLB 531, 203 (2002).]

@ RG unitary transformations change the decoupling scale —-
change the factorization scale. Use to characterize and explore
scale and scheme and process dependence!



All pieces mix with unitary transformation

@ A one-body current becomes many-body (cf. EFT current):

Uplq)Ut = +a + -

@ New wf correlations have appeared (or disappeared):

T3 A\ Oy T L ro— €E e €

U‘\UO> =U 1P Z 1Py —00— P2
—0-0-00— 1p,, —0-0-0-0— 1p,, —0-0—— 1p,,
—oo0—1s —0-0— 1s —_—-0—1s

o Similarly with [Wy) = ah|wp™")
e Thus spectroscopic factors are scale dependent
@ Final state interactions (FSI) are also modified by U

@ Bottom line: the cross section is unchanged only if all pieces are
included, with the same U: H()\), current operator, FSI, ...



How should one choose a scale/scheme?

@ To make calculations easier or more convergent

@ QCD running coupling and scale: improved perturbation
theory; choosing a gauge: e.g., Coulomb or Lorentz

e Low-k potential: improve Cl or MBPT convergence,
or to make microscopic connection to shell model or ...

@ (Near-) local potential: quantum Monte Carlo methods work
@ Better interpretation or intuition = predictability

e SRC phenomenology?
@ Cleanest extraction from experiment

e Can one “optimize” validity of impulse approximation?

o Ideally extract at one scale, evolve to others using RG
@ Plan: use range of scales to test calculations and physics

e Use renormalization group to consistently relate scales and
quantitatively probe ambiguities (e.g., in spectroscopic factors)

@ Match Hamiltonians and operators (EFT) and then use RG



Evolving the SRC explanation of nuclear scaling

@

S
> o
©

Subedi et al., Science 320, 1476 (2008)
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What is this vertex?

qg=k—k
I/:Ekakr
N Q*=-¢
N @
rp =
2mpyv

A-2
Higinbotham, arXiv:1010.4433

SRC interpretation:

NN interaction can scatter
states with p1,ps < kp

to intermediate states with
Py, ph > kr which are
knocked out by the photon

How to explain cross sections in terms of
low-momentum interactions?

Vertex depends on the resolution!

@ Instead of inclusive cross section, look at momentum distributions



Deuteron-like scaling at high k used to explain plateaus

10?

C. Ciofi and S. Simula, Phys.Rev C53, 1689(1996)

Momentum Distributions n(k)

T

g

3He, He, 160,
56Fe and N.M.

n(k) at high Momentum regions are
similar to it of the Deuteron

Ay 7 nPk)

Ratio
6 [ T

f

to the Deuteron
ML y s ]

" 'l
-——

k (fm™)
Almost Flat!

High resolution: Dominance of Vyy and SRCs (Frankfurt et al.)

Lower resolution = lower separation scale — fall-off depends on V),



Changing the factorization scale with RG evolution

n(k) (fm°)

@ Conventional analysis has (implied) high momentum scale
e Based on potentials like AV18 and one-body current operator

E bt 10°E 4
H E —— AVI8 E
L -1
1L --=- Vg, atA=2fm ]
: - N
F N = Vigath=15fm
1()n E -:=- CD-Bonn 3
. E N\ e NLO (500 MeV)
E '
= £
F 100
10°g
: ; ; 107 YN e
0 1 2 3 4 E P 3
- \
-1 -5 | LN | 1
k (fm™) 10 1 2 3 4

[From C. Ciofi degli Atti and S. Simula]

@ With RG evolution, probability of high momentum decreases, but
n(k) = (Alaja|A) = ((AlU') Uala, U (U|v,)) = (A|Uaa,U'|A)

is unchanged! |7\> is easier to calculate, but is operator too hard?



Operator flow in practice [e.g., see arXiv:1008.1569]

@ Evolution with s of any

N

operator O is given by: \ ;

107 3
: N (ala ]
Os = Us0U; 10’k ( q q)deuteron -
s E 3
so Os evolves via E o[ : ]
s = 10 E — N°LO unevolved 3
— £ -1 7
dOs S i -~ A=20fm 1
d = [[Gs, Hs], Os] 3 10F N == A=15fm" E
S F r N . ]
o~ 2 AN _
6 10 E AN 3
@ Us =2 [4i(s))(4i(0)] 5 f '\ ]
or solve dUs/ds flow g 10°F AN 3
< E \ \\ 3
@ Matrix elements of evolved 107 N .
operators are unchanged Fo: oo ]
S [ Coh oy [
@ Consider momentum 1070 1 2 3

distribution < wd\af,aq\lﬁd > q [fm"1]
at g = 0.34 and 3.0fm™"
in deuteron

IS



High and low momentum operators in deuteron
o Integrand of (Ua}a,U') for g = 0.34fm™"

K (fm) K (m™") K (fm™) Kk (m™)
Q. 1 2 3 01 2 3 01 2 3 01 2 3 y @ Momentum
; 05 distribution
FE 2 0 NG T T
= - +
= al 05 10'E (aqaq)deuteron
A =6.0 fm! 2=3.0 fm’’! 2 =2.0 fm! A =1.5fm" E
R = 0F — N°LO unevolved 7
S o --A=20fm"
| 3 10¢ “a=15fm
@ Integrand for g = 3.02 fm B
s
P P T P =
K () K ('l K (fm™ K (i) 3 0k
Q0 1 2 3 01 2 3 0 1 2 3 01 23 0.01 ol \
e ! 0.005 10750 ; ‘1 2 3
E2 0 qlfm™]
=
3 [] [] [ ] -0.005
2 =6.0 fm" 2=3.0 fm’”! % =2.0 fm"! 2 =1.5fm" 001

@ One-body operator does not evolve (for “standard” SRG)

@ Induced two-body operator = regularized delta function: ><



High and low momentum operators in deuteron
@ Integrand of (y,4| (UalaqUt) |14) for g = 0.34fm™"

K m") K (fm™) K (fm™) K (fmi")
Q1 2 3 01 2 3 01 23012 3 ; @ Momentum
| 05 distribution
Flé 2 | 0 10} T‘ !
=3 05 10'E (aqaq)deuteron
2 =6.0fm"’ 2.=3.0 fm’’ 2 =20 fm! 2=15fm" )
-1 10 — N°LO unevolved 3
. ---A=20fm"
1 - a=15Mm"

@ Integrand for g = 3.02fm™

4 [u(@)+ w(a)] [fm’]
-

K (fm") K (fm™) K (fm™") K (fm") ok
0 1 2 3 01 2 3 01 2 3 01 2 3 %107
0 1 10°F %
' . )
o 05 10° L s L
E£2 0 qlm’]
i 3 [ ] —_ . 05
A =6.0fm" 2=3.0 fm! 2 =20 fm! A=15fm"

@ Decoupling = High momentum components suppressed
@ Integrated value does not change, but nature of operator does
@ Similar for other operators: (r?), (Qq), (1/r) (1), (Gg), ...



U-factorization with SRG [Anderson et al., Bogner and Roscher]
@ U-factorization: Uy (k,q) — Ky\(k)Q.\(q) when k < Aand g > A

@ Cf., operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +1(@) [ Pdopt Z() W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Ur(h.@) = 3 (k12 610) = [ [ P ZvA(p)] (@ +

QO ' o e et v s

@ Test of U-factorization:

Ux(ki,Q) N KA(kI)QA(q)
Us(ko,q) = Ki(ko)Qx(q)’

so for g > A = 2H 124

[U(k,q) / Uky,a)l

@ Look for plateaus: k; < 2fm'< g
= it works!

@ Leading order = contact term! Ol




U-factorization with SRG [Anderson et al., Bogner and Roscher]
@ U-factorization: Uy (k,q) — Ky\(k)Q.\(q) when k < Aand g > A

@ Cf., operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +1(@) [ Pdopt Z() W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Xlow

Us(k.) = 3 (kiud) 0 la) = [S_kIud) | P ZO)wi(p)] (@) + -

@ Test of U-factorization:

Ux(ki,Q) N KA(kI)QA(q)
Us(ko,q) = Ki(ko)Qx(q)’

so for g > A = 2H 124

@ Look for plateaus: k; < 2fm'< g
= it works!

@ Leading order = contact term!




Nuclear scaling from factorization (schematic!)

@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)
(ALJ Ur(K', 4)qqUA(9. K)IA)

na(q)

(AlUajaqU'|A)

nq(q) N

= na(q) ~ Canp(q) at large q

n(k) (fm°)

NN T T "
5 X .
: 3
P He ]
*He
10°
56,
Fe
10"
10?
10° »
10" 1 1 1
0 1 2 3
-1
k (fm™)

[From C. Ciofi degli Atti and S. Simula]

Test case: A

(0|UsaqUtld) — (d| [ Ur(K', q")0q:qU(q, K)|d)

bosons in toy 1D model

=2, 2-body only
=3, 2-body only
- - -A=4, 2-body only |
* A=2, PHQ 2-body only, 2=2
O A=3, PHQ 2-body only, 1=2
x A=4, PHQ 2-body only, A=2 | |

—A
- A

Universal
p>>i

dependence (e} > S«
given by B Nk
| ST
QoQ AU
0\ S
L L bl
0 2 4 6 8 10 12
p

[Anderson et al., arXiv:1008.1569]



Nuclear scaling from factorization (schematic!)
@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)

na(a) _ (AlUayaqU'IA) _ (A [Ka(K)LJ Qu(9)3qa @ (@K (K)IA)
na(q)  (d|UalaqUtld)  (d| [Kn(K)[[Ox(a')dqqQn(q)]K(K)|d)

= na(q) ~ Canp(q) at large q Test case: A bosons in toy 1D model

—A=2, 2- body only
- = A=3, 2-body only
- - -A=4, 2-body only |
* A=2, PHQ 2-body only, 2=2
O A=3, PHQ 2-body only, 1=2
x A=4, PHQ 2-body only, A=2 | |

n(k) (fm°)

Universal By
p>>1 %
dependence Nl
given by B Nk
| RS
QoQ o 0~ =
N
‘0" 1 1 1 N N N O N
g i 2 3 4 0 2 4 6 8 10 12
p

k (fm™)
[From C. Ciofi degli Atti and S. Simula] [Anderson et al., arXiv:1008.1569]



Nuclear scaling from factorization (schematic!)

@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)

na(q)

(AlUajaqU'|A)

(Al [Kn(K')KA(K)|A)

= (3A

nq(q) -

= na(q) ~ Canp(q) at large q

10° N ' ' 2
\ H
-\ g

4

56,

n(k) (fm°)

He ]
He

Fe

k (fm™)

[From C. Ciofi degli Atti and S. Simula]

Test case: A

(d|UalaqUt|d)  (d| [Kx(K")Ka(K)|d)

bosons in toy 1D model

——A=2, 2-body only
- = A=3, 2-body only
- - -A=4, 2-body only |
* A=2, PHQ 2-body only, 2=2
O A=3, PHQ 2-body only, 1=2
x A=4, PHQ 2-body only, A=2 | |

Universal
p>>i
dependence
given by
laca

[Anderson et al., arXiv:1008.1569]
Proof of principle works. Realistic calculations in progress ...



Dependence of EMC effect on A is long-distance physics!
@ EFT treatment by Chen and Detmold [Phys. Lett. B 625, 165 (2005)]

=" @xqf(x) = Ra(x)=FH(x)/AFN(x)

“The x dependence of Ra(x) is governed by short-distance
physics, while the overall magnitude (the A dependence) of
the EMC effect is governed by long distance matrix elements
calculable using traditional nuclear physics.”

@ Match matrix elements: leading-order nucleon operators to
isoscalar twist-two quark operators = parton dist. moments

» /
= (x"MgvHo .- v NTN[1 + apNTN] + - -

Ra(x) = AFZN(X) 1405, ()G(A) where  G(A) = (AI(N'N)?|A) /Ao

— the slope 2% scales with G(A [Why is this not cited more?]
p ax



Scaling and EMC correlation via low resolution

@ SRG factorization, e.g.,
Ux(k,q) — Kx(k)Qx(9)
when k < Aand g > A

b | %2/ ndf 0.7688 /3

%Fe

0.4~ a .0.07879 + 0.006376

@ Dependence on high-q
independent of A
— universal [cf. Neff et al.]

@ A dependence from
low-momentum matrix
elements =— calculate!

@ EMC from EFT using OPE:

e Isolate A dependence, which I
factorizes from x a,(A/d)
° EMC A dependence from L.B. Weinstein, et al., Phys. Rev. Lett. 106, 052301 (2011)

long-distance matrix elements

If the same leading operators dominate, then does linear A
dependence of ratios follow immediately?
Need to do quantitative calculations to explore!



Where should we truncate many-body operators?

[ - b3 X T _I-7]
— 261 T e
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go.% 4He relative momentum densities [T. Neff]
r% 0.92
Z @ Induced two-body contributions on
0.88
L1 L bottom — effect depends on S, T

L PR IR L
14 16 18 2 22 24 26 28 3

Affm™] _ :
4He photo-absorption [Schuster et al.] @ Three-body needed at higher k

L |
@ Induced two-body needed for @ Power counting insight needed!

radius, total dipole strength



Apply new technologies to operator evolution

Two examples (also many on-going developments by other groups):

[ e—~a=2.8fm"
20 e—=)=24fm"
b e A=2.0 fm™'

[ “—A=1.8fm"
15F

3N-induced ".~“

Energy per neutron [MeV]

T T
-3
n [fm 7]

Neutron matter [K. Hebeler, rif]

@ SRG evolution in plane-wave
momentum basis

02

100 L

10t b

Q* [¥(Q) [fm]

-2 L
10 Alfm]

o
/3 2.00
140

0 1

107

2 3
Q [fm]

3H hyper-momentum wf? [K. Wendt]

@ SRG evolution in hyperspherical
harmonics momentum basis



MBPT for evolved operators (in uniform system)

=0) (fm")

Pan(a:Q

0 1 2 3 4 5
q(fm™)

Schiavilla et al. PRL 98, 132501 (2007)

@ Benchmark for finite nuclei: calculation at high resolution

@ Nuclear scaling and ratio of np/pp pairs



MBPT for evolved operators (in uniform system)

RG transformation of
pair density operator Us
(induced many-body

terms neglected):

simple calculation of pair density at low resolution in nuclear matter:

@ MBPT with leading induced operators only [Anderson, Hebeler]



MBPT for evolved operators (in uniform system)
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@ MBPT with leading induced operators only [Anderson, Hebeler]

o left: operator evolution restores initial (o(P =0, q))np
@ right: ratio of np to nn = role of tensor
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MBPT for evolved operators (in uniform system)

[ T T 10
™y with operator
0.0001 S\'\ evolution 7 = 8 |
- At
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@ MBPT with leading induced operators only

[Anderson, Hebeler]

o left: operator evolution restores initial (o(P =0, q))np

@ right: ratio of np to nn = role of tensor

@ Proof of principle. Next: add three-body and higher-order MBPT



Final comments and questions

@ Summary (and follow-up) points
@ Lower resolution = more natural nuclear structure

e While scale and scheme-dependent observables can be
(to good approximation) unambiguous for some systems,
they are often (generally?) not for nuclei. Physics changes!

e Scale/scheme includes consistent Hamiltonian and operators.
Be careful of treating experimental analysis in pieces!

@ Questions for which RG/EFT perspective + tools can help
Can we have controlled factorization at low energies?

How should one choose a scale/scheme?

What is the scheme-dependence of SF’s and other quantities?
What are the roles of short-range/long-range correlations?
How do we match Hamiltonians and operators?

When is the assumption of one-body operators viable?

...and many more. Calculations are in progress!
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Some on-going calculations to address basic issues

More general treatment of factorization [S. Bogner et al.]
Deuteron electrodisintegration [S. More et al ]

@ No issues with three-body operators

@ Do full calculation with final state interactions (FSI)

e Evolve with SRG, observe FSl/operator/wf contributions

MBPT for operators: relative momentum distributions
Quantitative scaling factors [E. Anderson, K. Hebeler]
e Few-body directly; LDA from infinite mattter MBPT
Many-body operators [E. Anderson, E. Jurgenson, K. Wendt]
e Technology for evolution and embedding
@ Power counting investigations
Variation of spectroscopic factors, single-particle quantities
e T. Duguet, rjf, and G. Hagen



