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? Discrete Light-Cone Quantization (DLCQ)

? Coherent State Formalism

Crucial References for the Model of Large N sQCD2:
G. ’t Hooft, NPB 75 (1974) 461
G.’t Hooft, G. Isidori, L. Maini, A.D. polosa and V. Riquer,
— A Theory of Scalar Mesons: PLB 662 (2008) 424
L. Maini, F. Piccinini, A.D. Polosa and V. Riquer,
— PRL 93 (2004) 212002 (hep-ph/0407017)
— B. Grinstein, R. Jora and A. D. Polosa, PLB 671 (2009) 440
— R. L. Jaffe, Phys. Rep. 409 (2005) 1

? UK, DSK, JPV, PLB 708 (2012) 195

? UK,DSK, JPV, SJB- under preparation (2013)
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— Light scalar mesons are most likely the lightest particles with an
exotic structure: –(and they cannot be classified as the standard qq̄
mesons).

— Instanton physics plays a role in their decay dynamics based on the
hypothesis that these particles are diquark-antidiquark mesons.

— Therefore, new ways of aggregation of quark matter could be
established by the experimental/theoretical investigation of these
particles.

— The idea of discussing exotic mesons and hadrons in terms of
diquarks dates back to the pioneering papers:

R.L. Jaffe, F. Wilczek, PRL 91 (2003), p.232003
(arXiv:hep-ph/0307341)

— and extended to the scalar meson sector – (by G.’t Hooft et al.
PLB 662 (2008))

— These Bound States of a spin zero diquark and an anti-diquark are
often called Tetraquark states.
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— Tetraquark Particles (q1q2)(q3q4) or the QQ̄-States:
— Expt: and Theoretical Evidences:

— Expts: E. M. Aitala et al. PRL 86 (2001) 770
M. Ablikim et al. PLB 598 (2004) 149

— Theory: I. Caprini et al. hep-ph/0512364
S. Descotes et al. EPJC 48 (2006) 553
N.A. Tornqvist, M. Ross PRL 76 (1996) 1575;
J, Schechter et al, PRD 58 (1998) 054012
J.R. Pelaez MPLA 19 (2004) 2879
Luciano Maini-PoS HEP-2005 (2006) 105

— Series of Papers by Italian Group on Tatraquark (4-quark) states:

— Sub-Gev tetraparticles: f0(980), a0(980), κ800, σ(500)

— Heavier tetraparticles X (3872),X (3876),Y (2175),Z (4430),
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?? Grinstein et al., have considered the ’t Hooft Model:
- a Model of Large N scalar QCD in 2D (sQCD2)

? - Imp. Ansatz made by Grinstein et al. is that the Scalar Fields of
Large-N sQCD2 can be thought of as the Diquark fields and the
corresponding Bethe Salpeter Eq (BSE) of this theory should then
yield the spectrum of Tetraquark QQ̄ particles

? They have considered the features of the bound state equation and
have computed the discrete hadron mass spectrum in this theory

? Scalar fields of this model represent spin zero diquarks and they
estimate the minimum allowed mass for the first radial excitation of
the lowest diquark-antidiquark scalar mesons

? They even try to extend their considerations to the case of spin one
diquarks
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— G. ’t. Hooft, G. Isidori, L. Maiani, A. D. Polosa and V. Riquer
(in the Paper: - A Theory of Scalar Mesons: PLB662 (2008)424)

— have shown as to how one could explain the decays of the light
scalar mesons by assuming a dominant diquark-antidiquark (QQ̄)
structure for the lightest scalar mesons, where the diquark (Q) is
being taken to be a spin zero antitriplet color state.

— In the first approximation the nonet formed by f0(980), a0(980),
κ(900), σ(500) is interpreted as the lowest (QQ̄) multiplet.

— and the decuplet of scalar mesons with masses above 1 GeV,
formed by f0(1370), f0(1500), f0(1710), a0(1450), K0(1430),

(and possibly containing the lowest glueball), is interpreted as the
lowest QQ̄ scalar multiplet (which is against the naive qq̄ picture).
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Grinstein, Jora and Polosa provide an evidence in support of this
hypothesis by estimating the mass of the first radial excitation of the
lowest sub-GeV QQ̄ scalar meson

Grinstein et al. perform the calculation in Large-N sQCD in 2D

? This is a planar, linearly confining theory which admits a Bethe
Salpeter equation (BSE) describing the discrete spectrum of QQ̄
bound states

NB: In this theory no orbital angular momentum excitations are
possible since no rotation operator can be introduced and the discrete
spectrum describes radial excitations
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? — Imp. Ansatz made by Grinstein et al.

— is that the Scalar Fields of Large-N sQCD2 can be thought of as
the Diquark fields and the corresponding BSE of this theory should
then yield the spectrum of Tetraquark QQ̄ particles

? — Here, one does not expect that the mass spectra in sQCD2

reproduce numerically the physical values of the masses of real pions
and sigmas

— but one assumes that the regularities in the spectra of this kind of
hadron-string models resemble those in the physical ones

— In the work of Grinstein et al., the gauge fields have been
considered in the adjoint representation of SU(N) and the scalar
fields in the fundamental representation

— Further the theory is asymptotically free and linearly confining
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? Different aspects of this theory have been studied by several authors
in various contexts

? In a recent paper (Usha, Daya, James, PLB (2012)):

— We have studied LFQ of this theory (with a mass term for the
complex scalar (diquark) field but without the Higgs potential) on the
LF (i.e., on the hyperplanes defined by the ELCT:

τ = x+ = 1√
2
(x0 + x1) = constant

Fot the LFQ, we consider:

τ = x+ = 1√
2
(x0 + x1) = constant, as the LC time coordinate and

τ = x− = 1√
2
(x0 − x1) = const. is longitudinal LC space coordinate

— PAM Dirac, Rev. Mod. Phys. 21 (1949) 392:
— S.J. Brodsky, H.C. Pauli, S.S. Pinsky Phys. Rep. 301 (1998) 299
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? We consider the 2D model of large N scalar QCD in the presence of
a Higgs potential (– studied by Grinstein, Jora and Polosa without
Higgs potential but with a mass term for the complex scalar- diquark
field φ)

? We absorve the mass term for the complex scalar (diquark) field φ
in our Higgs potential

? The bosonized action of the theory that we propose to study is
defined (suppresing the color indices and after ignoring the gluon self
coupling term) by the action:

Our gauging prescription is: ∂µ → Dµ = (∂µ + iρAµ)
(where the color indices are being suppresed)
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Action of the theory (with the color indices being suppresed) is:

S =

∫
L(φ, φ†,Aµ)d2x

L =

[
−1

4
FµνF

µν + ∂µφ
†∂µφ

+ [iρ(φAµ∂µφ
† − φ†Aµ∂µφ) + ρ2φ†φAµA

µ]− V (|φ|2)

]
V (|φ|2) = V (φ†φ) = [µ2(φ†φ) +

λ

6
(φ†φ)2] , |φ|2 = φ†φ , φ0 6= 0

F µν = (∂µAν − ∂νAµ) , ρ =
g√
N

, (−µ2 > 0 , λ > 0)

gµν = gµν :=

(
1 0
0 −1

)
, µ, ν = 0, 1 (IFQ)

gµν = gµν :=

(
0 1
1 0

)
, µ, ν = +, − (LFQ) (1)

May 14, 2013 11 / 50



— 1st term in L represents the KE term of the gluon field
(the color indices have been suppressed)

— 2nd term represents the KE term for the scalar (diquark) field

— 3rd represents the interaction term for the scalar (diquark) field
with the gluon field (the color indices have again been suppressed)

— the last term represents the Higgs potential where the mass term
for the scalar (diquark) field has been absorved in the Higgs potential

— Here λ represents the self coupling of the scalar (diquark) field and
λ = 0 reproduces the theory of Grinstein, Jora and Polosa

We choose (−µ2 > 0, λ > 0) s.t. the potential remains a DWP, and
also |φ0| 6= 0 here, so that the SSB could take place
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? Euler-Lagrange equations of motion of the theory
(with V ≡ V (|φ|2)) are obtained as:

[∂µF
µν + iρ(φ∂νφ† − φ†∂νφ) + 2ρ2φ†φAν ] = 0[

−∂V
∂φ

+ ρ2φ†AµA
µ + iρAµ∂

µφ† + iρ∂µ(φ†Aµ)− ∂µ∂µφ†
]

= 0[
− ∂V
∂φ†

+ ρ2φAµA
µ − iρAµ∂

µφ− iρ∂µ(φAµ)− ∂µ∂µφ
]

= 0

IFQ : µ, ν = 0, 1 ; LFQ : µ, ν = +,−(2)
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The Light-Front Hamiltonian and Path Integral Quantization:

— The bosonized action of the theory (suppresing the color indices)
in LF coordinates x± := (x0 ± x1)/

√
2 reads:

S =

∫
Ldx+dx−

L =

[
1

2
(∂+A

+ − ∂−A−)2 + (∂+φ
†∂−φ + ∂−φ

†∂+φ)− V (φ†φ)

+ iρA+(φ∂+φ
† − φ†∂+φ) + iρA−(φ∂−φ

† − φ†∂−φ)

+ 2ρ2φ†φA+A−
]

(3)
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NB: Grinstein et al. have studied this action, after implementing the
gauge-fixing condition (GFC) A+ ≈ 0 “strongly” in the above action
However, we follow the standard Dirac quantization procedure (DQP)
and we do not fix any gauge at this stage

We consider this GFC (A+ ≈ 0) only as one of the gauge constraints
which becomes strongly equal to zero only on the reduced
hypersurface of the constraints and remains non-zero in the rest of
the phase space of the theory and we do not set it strongly equal to
zero in the Lag. density (this is the conceptual difference of our
present work with that of Grinstein et al.)

Also, we have introduced the Higgs potential in our present work and
have absorved the mass term for the scalar (diquark) field in our
Higgs potential
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Canonical momenta obtained from above action are:

π :=
∂L

∂(∂+φ)
= (∂−φ

† − iρA+φ†)

π† :=
∂L

∂(∂+φ†)
= (∂−φ + iρA+φ)

Π+ :=
∂L

∂(∂+A−)
= 0

Π− :=
∂L

∂(∂+A+)
= (∂+A

+ − ∂−A−) (4)

Here π, π†,Π+ and Π− are the momenta canonically conjugate
respectively to φ, φ†,A− and A+
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The above equations however, imply that the theory possesses three
primary constraints:

χ1 = Π+ ≈ 0

χ2 = [π − ∂−φ† + iρA+φ†] ≈ 0

χ3 = [π† − ∂−φ− iρA+φ] ≈ 0 (5)

Canonical Hamiltonian density in LFQ is:

Hc =

[
π∂+φ + π†∂+φ

† + Π+∂+A
− + Π−∂+A

+ − L
]

=

[
1

2
(Π−)2 + Π−(∂−A

−) + V (φ†φ)

+ iρA−(φ†∂−φ− φ∂−φ†)− 2ρ2φ†φA+A−
]

(6)
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After including the primary constraints χ1, χ2 and χ3 in the canonical
Hamiltonian density Hc with the help of the Lagrange multiplier fields
u, v and w , the total Hamiltonian density HT could be written as :

HT =

[
(Π+)u + (π − ∂−φ† + iρA+φ†)v + (π† − ∂−φ− iρA+φ)w

+
1

2
(Π−)2 + Π−∂−A

− + V (φ†φ)

+ iρA−(φ†∂−φ− φ∂−φ†)− 2ρ2φ†φA+A−
]

(7)

HE’s could be obtained from the total Hamiltonian: HT =
∫
HTdx

−.
Demanding that the PC: χ1 be preserved in the course of time, one
obtains the secondary Gauss-law constraint of the theory as:

χ4 = [∂−Π− + iρ(φ∂−φ
† − φ†∂−φ) + 2ρ2φ†φA+] ≈ 0 (8)
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Preservation of χ2, χ3 and χ4, for all times does not give rise to any
further constraints.
The theory is thus seen to possess only 4 C’s χi (with i = 1,2,3,4).
The constraints χ2, χ3 and χ4 could however, be combined in to a
single constraint:

ψ = [∂−Π− + iρ(φπ − φ†π†)] ≈ 0 (9)

with this modification, the new set of C’s becomes:

Ω1 = χ1 = Π+ ≈ 0

Ω2 = ψ = [∂−Π− + iρ(φπ − φ†π†)] ≈ 0 (10)

Further, the matrix of PB’s among the C’s Ωi , with (i = 1, 2) is
seen to be a singular matrix implying that the set of C’s Ωi is
first-class and that the theory is GI
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Vector gauge current of the theory Jµ ≡ (J+, J−) is given by:

J+ =

∫
dx−

[
−iρβφ∂−φ† + iρβφ†∂−φ

+ (∂−β)(∂+A
+ − ∂−A−)− 2ρ2βA+φ†φ

]
J− =

∫
dx−

[
−iρβφ∂+φ† + iρβφ†∂+φ

− (∂+β)(∂+A
+ − ∂−A−)− 2ρ2βA−φ†φ

]
(11)
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Divergence of vector gauge current density of the theory could be
easily seen to vanish satisfying the continuity equation: ∂µj

µ = 0
— implying that the theory possesses at the classical level, a LVGS.
— Action of the theory is indeed seen to be invariant under LVGT’s:

δφ = −iρβφ , δφ† = iρβφ† , δA− = ∂+β , δA
+ = ∂−β

δπ = [ρ2βφ†A+ + iρβ∂−φ
†] , δπ† = [ρ2βφA+ − iρβ∂−φ]

δu = δv = δw = δΠ+ = δΠ− = δΠu = δΠv = δΠw = 0 (12)

where β ≡ β(x+, x−) is an arbitrary function of its arguments.

For DQ and HF we convert the set of I-CC’s of the theory ηi into a
set of II-CC’s, — by imposing, arbitrarily, some additional
constraints on the system called GFC’s or the gauge-constraints.
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We could now choose, e.g., the following set of GFC’s:

ζ1 = A+ ≈ 0 , ζ2 = A− ≈ 0 (13)

Here the gauge A+ ≈ 0 represents the LC time-axial or temporal
gauge and the gauge A− ≈ 0 represents the LC coulomb gauge
and both of these gauges are physically important gauges.

Corresponding to this gauge choice, the theory has the following set
of constraints under which the quantization of the theory could, e.g.,
be studied:

ξ1 = Ω1 = χ1 = Π+ ≈ 0

ξ2 = Ω2 = ψ = [∂−Π− + iρ(φπ − φ†π†)] ≈ 0

ξ3 = ζ1 = A+ ≈ 0

ξ4 = ζ2 = A− ≈ 0 (14)
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Matrix Rαβ of PB’s among the set of C’s ξi with (i = 1, 2, 3, 4) is
seen to be nonsingular with the determinant given by[

||det(Rαβ)||
] 1

2

=

[
[δ
′
(x− − y−)][δ(x− − y−)]

]
(15)

Nonvanishing ELCT-CR’s of the theory, under the GFC’s: A+ = 0
and A− = 0 are:

[φ(x+, x−) , π(x+, y−)] = i δ(x− − y−) (16)

[φ†(x+, x−) , π†(x+, y−)] = i δ(x− − y−) (17)

[φ(x+, x−) , Π−(x+, y−)] =
1

2
ρφ ε(x− − y−) (18)

[φ†(x+, x−) , Π−(x+, y−)] = − 1

2
ρφ† ε(x− − y−) (19)

[π(x+, x−) , Π−(x+, y−)] =
1

2
ρ π ε(x− − y−) (20)
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[π†(x+, x−) , Π−(x+, y−)] = − 1

2
ρ π† ε(x− − y−) (21)

[Π−(x+, x−) , φ(x+, y−)] =
1

2
ρφ ε(x− − y−) (22)

[Π−(x+, x−) , φ†(x+, y−)] = − 1

2
ρφ† ε(x− − y−) (23)

[Π−(x+, x−) , π(x+, y−)] = − 1

2
ρπ ε(x− − y−) (24)

[Π−(x+, x−) , π†(x+, y−)] =
1

2
ρπ† ε(x− − y−) (25)
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First-order Lagrangian density LI0 of the theory is:

LI0 :=

[
π(∂+φ) + π†(∂+φ

†) + Π+(∂+A
−) + Π−(∂+A

+)

+Πu(∂+u) + Πv (∂+v) + Πw (∂+w)−HT

]
=

[
1

2
(Π−)2 + ∂+φ

†∂−φ + ∂−φ
†∂+φ

− iρA−(φ†∂−φ− φ∂−φ†)
− iρA+(φ†∂+φ− φ∂+φ†)

+ 2ρ2φ†φA+A− − V (φ†φ)

]
(26)
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In PI formulation, transition to quantum theory is made by writing
the vacuum to vacuum TA for the theory called the generating
functional Z [Jk ]

PI for our theory under the GFC’s: ζ1 = A+ ≈ 0 and ζ2 = A− ≈ 0, in
the presence of the external sources Jk is:

Z [Jk ] =

∫
[dµ] exp

[
i

∫
d2x

[
JkΦk + π∂+φ + π†∂+φ

† + Π+∂+A
−

+ Π−∂+A
+ + Πu∂+u + Πv∂+v + Πw∂+w −HT

]]
(27)

Phase space variables of the theory are: Φk ≡ (φ, φ†,A−,A+, u, v ,w)
with the corresponding respective canonical conjugate momenta:
Πk ≡ (π, π†,Π+,Π−,Πu, Πv ,Πw )
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The functional measure [dµ] of the generating functional Z [Jk ] under
the above gauge-fixing is obtained as :

[dµ] = [δ
′
(x− − y−)δ(x− − y−)][dφ][dφ†][dA+][dA−]

[du][dv ][dw ][dπ][dπ†][dΠ−][dΠ+]

[dΠu][dΠv ][dΠw ]δ[Π+ ≈ 0]δ[A− ≈ 0]

δ[(∂−Π− + iρ(φπ − φ†π†)) ≈ 0]δ[A+ ≈ 0] (28)

LF Hamiltonian and PIQ of the theory under the set of GFC’s:
A+ ≈ 0 and A− ≈ 0 is now complete
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Further, the reduced Hamiltonian density of the theory expressed on
the reduced hypersurface of the constraints (obtained by
implementing the constraints of the theory strongly)
after taking a specific value for the Higgs potential V (φ†φ)
(with φ0 6= 0) reads:

HR =

[
1

2
(Π−)2 + µ2(φ†φ) +

λ

6
(φ†φ)2

]
V (φ†φ) =

[
µ2(φ†φ) +

λ

6
(φ†φ)2

]
Π− := (∂+A

+ − ∂−A−) (29)

Here (−µ2) is positive and λ is positive

So the Higgs potential remains a DWP and the SSB can take place
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? ? ? DLCQ and Coherent State Formalism
— Some Crucial References: Literature on DLCQ is rather Vast

— Hans Pauli, Stan Brodsky and Co-workers:
PRD32 (1985) 1993; PRD32(1985)2001; and Chain of Papers

— Rozowsky and Thorn: PRL 85 (2000) 1614

— James Vary and his Co-workers -in a Series of Papers:
(Dipankar Chakrabarti et al. PLB582 (2004); PLB617 (2005));
(A.Harindernath, James Vary PRD 36 (1987); PRD 37 (1988) 1064;
PRD 37 (1988) 1076); James Vary et al., PRD 71(2005); PRD 69
(2004); hep-th/0106248; NPB-PS 161 (2006); PRC 81 (2010)

— have studied the DLCQ and the Coherent State Formalism (CSF)
of the 2D φ4 theory and 2D φ3 theory, using the PBC and APBC
(they have also studied DLCQ of several field theories)

— and we use it as our guide for the present work
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We now study the DLCQ of the present theory with
(−L ≤ x− ≤ +L) using

(A) anti-periodic Boundary Conditions (APBC) and
(B) periodic boundary conditions (PBC) – after excluding the ZM

The mode expansions (at x+ = 0) with (k+
n

2
= nπ

L
) have the form :

φ(x−) =
∑
n

[
1√
4πn

[
ane
−i( nπ

L
)x− + b†ne

i( nπ
L
)x−
]]

φ†(x−) =
∑
n

[
1√
4πn

[
bne

−i( nπ
L
)x− + a†ne

i( nπ
L
)x−
]]

Aµ(x−) =
∑
n

[
εµ√
4πn

[
dne

−i( nπ
L
)x− + d †ne

i( nπ
L
)x−
]]

(30)
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Here (A): n = 1
2
, 3

2
, 5

2
, ...., for APBC’s and

(B): n = 1, 2, 3, ...., for PBC’s (after excluding the ZM (for n = 0))
(sumation over n is implied)

For the polarization vector εµ we take ε+ = 0 and ε− = 1
in our mode expansion for Aµ(x−)

The energy-momentum tensor T µν is:

T µν =

∫
1

2
dx−T µν (31)

where T µν is the energy-momentum tensor density of the theory.

T µν :=
∑
k

[
∂L

∂(∂µφk)
∂νφk − Lgµν

]
(32)
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The longitudinal momentum operator of the theory is:

P+ =

∫
1

2
dx−P+ =

∫
1

2
dx−T ++ :=

2π

L
K (33)

where L defines the compact domain −L < x− < +L and

Hamiltonian operator of the of the theory
(with P− = T +− = Hc) is:

P− =

∫
1

2
dx−P− =

∫
1

2
dx−T +− =

∫
1

2
dx−Hc :=

L

2π
H (34)

The normal ordered value for K is obtained as:

K =
L

2π
P+ =

L

2π
T ++

=
L

2π

[
8

1

4π

π

L

π

L

L

π
2π

][
n(a†nan + b†nbn + 1)

]
(35)
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Normal ordered Hamiltonian (H =
∫

1
2
dx−Hc) is:

H =

[
Hm

0 + Hem
0 + Hρ

I + Hλ
I

]
(36)

with

Hm
0 =

[
1

2

µ2

2

L

π

2π

4π

][
2

1

2n
(a†nan + b†nbn + 1)

]
Hem

0 =

[
−1

2

1

4π

L

π
(2π)

π

L

π

L

][
2n(d †ndn)

]
(37)
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and

Hρ
I =

[
1

2

1

2

1

4π

1√
4π

iπ

L

L

π

2π

1

][
niρ√
lmn

][
Hρ1

I − Hρ2
I

]
Hρ1

I =

[
d †l a

†
namδm,n+l − d †l a

†
manδn,l+m + d †l b

†
nbmδm,n+l

− d †l b
†
mbnδn,l+m

]
Hρ2

I =

[
d †namdlδn,l+m − a†mandlδm,n+l + b†nbmdlδn,l+m

− b†mbndlδm,n+l

]
(38)
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Hλ
I =

[
1

2

L

π

1

4π

1

4π

2π

1

][
λ

6

1√
klmn

][
Hλ1

I + Hλ2
I + Hλ3

I

]
Hλ1

I =

[
a†ka
†
mb
†
nalδl ,k+m+n + a†ka

†
mb
†
l anδn,k+l+m

+ a†kb
†
l b
†
nbmδm,k+l+n + a†mb

†
nb
†
l bkδk,l+m+n

]
Hλ2

I =

[
a†ka
†
malanδk+m,l+n + b†l b

†
nbkbmδl+n,k+m + a†mb

†
nbkalδm+n,k+l

+a†kb
†
l bmanδk+l ,m+n + a†kb

†
l bmanδk+l ,m+n + b†l a

†
mbkanδl+m,k+n

]
Hλ3

I =

[
a†kalanbmδk,l+m+n + a†malanbkδm,l+n+k

+ b†l bkbmanδl ,k+m+n + b†nbkbmalδn,k+l+m

]
(39)
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Here

(A): k , l , m, n = 1
2
, 3

2
, 5

2
, ..., for APBC’s, and

(B): k , l , m, n = 1, 2, 3, ...., for PBC’s (– ZM Excluded)

and the summation over k , l , m, n is implied

We define the coherent states |αn >, |βn > and |γn > as follows:

|αn > = exp(−1

2
|αn|2)

∑
n

αn

√
n!
|n > (40)

|βn > = exp(−1

2
|βn|2)

∑
n

βn

√
n!
|n > (41)

|γn > = exp(−1

2
|γn|2)

∑
n

γn√
n!
|n > (42)

αn 6= α∗n , βn 6= β∗n , γn 6= γ∗n , n = 0, 1, 2, ....∞ (43)
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These coherent states |αn >, |βn > and |γn > are the eigen states of
the annihilitation operators an , bn and dn respectively:

an|αn > = αn|αn > , < αn|αn >= 1 (44)

bn|βn > = βn|βn > , < βn|βn >= 1 (45)

dn|γn > = γn|γn > , < γn|γn >= 1 (46)

Further, one can also show that:

< αn|an|αn > = αn , < αn|a†n|αn >= α∗n (47)

< βn|bn|βn > = βn , < βn|b†n|βn >= β∗n (48)

< γn|dn|γn > = γn , < γn|d †n |γn >= γ∗n (49)
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Further, we construct the state |ψn > as:

|ψn > = |αn, βn, γn > (50)

which implies

< ψn|φ(x−)|ψn > =
1√
4π

f (x−) (51)

< ψn|φ†(x−)|ψn > =
1√
4π

f ∗(x−) (52)

< ψn|A−(x−)|ψn > =
1√
4π

fA(x−) (53)
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with

f (x−) =
∑
m

[
1√
m

[
αme

−i(mπ
L
)x− + β∗me

i(mπ
L
)x−
]]

, m = 1, 2, 3, ....(54)

f ∗(x−) =
∑
m

[
1√
m

[
βme

−i(mπ
L
)x− + α∗me

i(mπ
L
)x−
]]

, m = 1, 2, 3, ....(55)

fA(x−) =
∑
m

[
1√
m

[
γme

−i(mπ
L
)x− + γ∗me

i(mπ
L
)x−
]]

, m = 1, 2, 3, ....(56)
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One can now easily show that

< φ†φ > := < ψn|φ†φ|ψn >

=
1

4π
f ∗f =

1

4π
|f |2 (57)

and

< ∂−A
− > := < ψn|∂−A−|ψn >

=
1√
4π
∂−fA =

1√
4π

f
′

A =
1√
4π

f̃

f̃ := f
′

A = ∂−A
− (58)

We also consider the expectation value of the Hamiltonian:

h := < H > := < ψn|H |ψn > (59)
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We also consider the expectation value of the Hamiltonian:

h := < H > := < ψn|H |ψn > (60)

For minimizing the above expectaction value of the Hamiltonian, the
conditions for the stationary points (defined by (f0, f̃0)) are
determined by:

∂h

∂f

∣∣∣∣
(f0,f̃0)

= 0 ,
∂h

∂ f̃

∣∣∣∣
(f0,f̃0)

= 0 (61)

giving

f0 = 0 , f 20 =

[
−12πµ2

λ

]
, f̃0 = 0 (62)

The stationary points are:

(f0 , f̃0) ≡ (0, 0) , (f0 , f̃0) ≡
(
θ , 0

)
(63)
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with

fmin = f0 = ± θ = ±
√
−12πµ2

λ
, (−µ2) > 0 (64)

Further we set

f (x−) = + θ = +

√
−12πµ2

λ
, 0 < x− < L (65)

f (x−) = − θ = −
√
−12πµ2

λ
, − L < x− < 0 (66)

The Fourier expansion for f = f (x−) is found to be

f (x−) =
∑
m

[
4θ

(2m + 1)π
sin

(
(2m + 1)πx−

L

)]
, m = 0, 1, 2, ...,

(67)
and f̃ = ∂−fA does not have any Fourier expansion.
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Vacuum Energy Density and Soliton (kink anti-kink) Mass

Classical vacuum energy density (VED) of the theory is:

VED =< ψn|
∫

1

2
dx−

[
µ2φ†φ +

1

2
(∂−A

−)2
]
|ψn > (68)

with

< φ†φ >=
f 20
4π

, < ∂−A
− >=

f̃0√
4π

, f̃0 :=< ∂−fA > (69)

where

f0 = ± θ = ±
√
−12πµ2

λ
, f̃0 = 0 (70)
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Finally the VED is obtained as

VED =

[
−12πµ2

λ
· µ

2

8π

]
=

[
−6πµ4

4πλ

]
(71)

< 0 , (−µ2) > 0 (72)

NB: The VED is Negative because (−µ2) > 0

The soliton (kink anti-kink) mass can be extracted from the
numerical results of matrix diagonalization

(— work is in progress)
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? Some Observations and Open Questions:
(most of them follow from Stan Brodsky and remain to be
achieved.....!!!)

— One would now like to compare e.g., the transition matrix
elements of the normal ordered Hamiltonian for:
(A) APBC and (B) PBC after excluding the ZM

This should be applicable to the case of bound state problems for the
confined theories: — where colored fields are always within the
finite domain of bound states which do not have ZM’s

— One would like to add a constant field φ0 to the mode expansions
and then again calculate the normal ordered Hamiltonian
and redo the exercise once again to see what happens.....???

— this should be applicable to the case of an unconfined theory
where the ZM can be interpreted as an external constant field,
much like a Stark or Zeeman field in atomic physics
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— It is important to emphasize here that the k+
n = nπ

L
= 0, ZM

requires uniform support of a field over all x−.

— and one could possibly handle it by defining the simple ZM’s and
global ZM’s etc as studied by Pauli et.al. in ZPC.

— another challenging task is to compute a convenient orthonormal
basis for the higher Fock sectors and then compute the needed
transition matrix elements of the LF Hamiltonian

One could perhaps handle it by defining the momentum fraction
x = n

K
(where K= field momentum) so that x lies between 0 and 1

— this might be helpful in finding the maximum value of n and
therefore we could study the corresponding higher Fock states.....!!

— We need more enlightenment from all sides.........???
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The Lively and Versatile

James Vary

May You Live Thousand Years,

Happy B’day to You................!!!!!

Daya

— Thanks for your kind attention.............!!!!!
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