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Abstract

A theoretical technique for description of composite nuclear particle interac-

tion, in particular, the resonating group model and the orthogonality conditions

model, is demonstrated. The discussion is focused on an algebraic version of

the orthogonality conditions model proposed by the authors. In the framework

of the developed formalism, it is possible to take into account among others the

exchange terms of the kinetic energy operator precisely. Thus an approximation

which is close to the original resonating group model, is built. Both a direct

algebraic approach and a method based on the solution of integro-differential

Schrödinger equation containing nonlocal terms related to forbidden and semi-

forbidden states, are proposed as computational schemes. This equation turns

out to be preferable in studies of narrow resonances. It is demonstrated that a

decay width of a system to two-heavy-fragment channel is strongly affected by

the nonlocal terms.

Keywords: Clustering; Pauli principle; nucleus-nucleus interaction; resonance

states

1 Introduction

Properties of interaction of composite nuclear particles, i. e. the particles consisting
of some identical fermion constituents, contrast dramatically with the properties of
interaction of structureless ones. The principal origin of this contrast is the Pauli
exclusion principle. As a consequence of the identity of the fermions composing two
(or more) fragments in a realistic approach to the interaction of composite particles, it
is necessary to take into account an antisymmetry of the wave function of the system
as a whole and thus to consider internal multi-nucleon structures of the fragments.
As a result, some eigenfunctions of the Hamiltonian describing the composite-particle
interaction may vanish after the action of the antisymmetrization operator (forbidden
states) or be renormalized by this operator (antisymmetrizer).

If the internal states of the interacting composite particles are fixed, the resonat-
ing group model (RGM) proposed in Refs. [1, 2] allows one to reduce the problem of
description of their interaction to a two-body one (we do not consider systems of three
or more fragments below). However the resulting two-body equation turns out to be
not a Schrödinger-type one because it contains exchange integral kernels in all its
terms. Methods of reduction of the RGM equation to the Schrödinger-type equation
with a Hermitian Hamiltonian, are known (see, for example, Ref. [3]). However, even
after these rearrangements, the RGM is an overcomplicated approach which looks still
far from a habituated scheme of description of two-body interactions. Any pair of
the composite particles should be described individually. In fact, the RGM remains a
many-nucleon but not a two-body technique. Another problem of RGM is its inflex-
ibility. As a consequence of incompleteness of the space of solutions inherent for the
model, experimental observables are not well-reproduced within the RGM sometimes.

A goal of a lot of papers published after the original ones is to construct a method
which, on the one hand, allows one to account for the property of fermion identity in
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a system of two composite particles (and thus for the Pauli exclusion principle and
various exchange effects caused by this identity) and, on the other hand, is relatively
simple and flexible. The basic step on this way was made in the paper [4]. An
approximation of the RGM which makes it more or less similar to an ordinary two-
body approach is proposed there. Various alternatives of this approach have been
developed up to now. These alternatives differ by methods of manipulation with the
exchange terms. They are known under a unified name of orthogonality conditions
model (OCM).

An algebraic version (AV) of OCM was proposed in Ref. [5]. It was built by
analogy with the AV RGM proposed in Refs. [6, 7, 8]. Due to a unique potentiality
of the algebraic formalism, it was possible to express precisely the exchange terms
originated by the kinetic energy operator through eigenvalues of the so-called “norm”
kernel of RGM and thus to construct a simple approximation which is very close to
the original RGM.

In the present paper we demonstrate the lines of development of the method
presented in Ref. [5]. In particular, an integro-differential equation of the Schrödinger
type with a Hermitian Hamiltonian containing nonlocal terms related to the forbidden
by the Pauli principle and semi-forbidden states, is obtained. This “comeback” to
the methods of continuous mathematics turns out to be convenient in description of
widths of narrow resonances decaying through cluster-cluster channels.

A number of characteristic examples including an interaction of light clusters, a
nucleon-nucleus interaction, and an interaction of heavy ions, are considered. It is
demonstrated by means of AV OCM that the values of the decay widths are strongly
affected by the exchange effects in case of heavy-ion interactions. A pair of heavy
magic fragments 16O+ 16O is considered as an example.

2 Composite-particle interaction in the framework

of RGM and OCM. One-channel problem

2.1 RGM and OCM. Conventional formalism

Let as consider a traditional method of the description of composite particle interac-
tion in the framework of RGM and its approximations used in OCM. Here we restrict
this consideration to a one-channel problem for the sake of brevity.

The wave function of RGM [1, 2] is chosen in the form:

ΨA1+A2
= Â {ΨA1

ΨA2
Φ (ρ)}, (1)

Â =

(

A
A1

)

−1/2
(

1 +
∑

p

(−1)
p
P̂

)

, (2)

where the sum is over all permutations P̂ of A (A = A1 + A2) nucleons, p is the
parity of the permutation and Φ (ρ) is a probe wave function. Inserting (1) into the
A-fermion equation

ĤAΨA = EΨA, (3)

ĤA = T̂ + V̂ , T̂ =

A
∑

i=1

p̂2
i

2m
, (4)

V̂ =

A
∑

i<j=1

V (ri − rj), (5)

one can obtain a two-body equation:
(

T̂ρ + V̂ρ − E′N̂ρ

)

Φ (ρ) = 0, (6)
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where
E′ = E − E1 − E2, (7)

and the normalization condition
〈

N̂1/2
ρ Φ (ρ)

∣

∣

∣ N̂1/2
ρ Φ (ρ)

〉

= (1, δ (E − E′) , δ (k − k′) , etc.) (8)

for bound and continuous states respectively. For a fixed value of the angular mo-
mentum of the relative motion l, the integral operators can be presented as





N̂ρ,l

T̂ρ,l

V̂ρ,l



ϕl (ρ) ≡
∫





Nl (ρ
′, ρ)

Tl (ρ
′, ρ)

Vl (ρ
′, ρ)



ϕl (ρ
′) ρ′2dρ′, (9)





Nl (ρ
′, ρ′′)

Tl (ρ
′, ρ′′)

Vl (ρ
′, ρ′′)





=

〈

Â

{

ΨA1
ΨA2

1

ρ2
δ (ρ− ρ′) Ylm (Ωρ)

}∣

∣

∣

∣





1̂

T̂

V̂





∣

∣

∣

∣

Â

{

ΨA1
ΨA2

1

ρ2
δ (ρ− ρ′′)Ylm (Ωρ)

}〉

.

(10)

Thus the discussed two-body equation turns out to be an integro-differential equation
of the form which differs from the Schrödinger one.

The equation (6) can be transformed to a Schrödinger-like form by action of the
operator N̂−1

ρ,l :
(

N̂−1
ρ,l T̂ρ,l + N̂−1

ρ,l V̂ρ,l − E′

)

ϕl(ρ) = 0, (11)

but the resulting Hamiltonian turns out to be a non-Hermitian one. Introducing a
new wave function

φl(ρ) = N̂
1/2
ρ,l ϕl(ρ), (12)

one can obtain a Schrödinger-like equation with a Hermitian Hamiltonian
(

N̂
−1/2
ρ,l T̂ρN̂

−1/2
ρ,l + N̂

−1/2
ρ,l V̂ρ,lN̂

−1/2
ρ,l − E′

)

φl(ρ) = 0 (13)

and usual normalization conditions:

〈φE,l(ρ) |φE′,l(ρ)〉 = 1 (14)

for states of discrete spectrum, and

〈φE,l(ρ) |φE′,l(ρ)〉 = δ(E − E′) (15)

(or similar) for states in continuum.
The basic approximation of the original OCM [4] is

V (ρ′, ρ′′) = V (ρ′) δ(ρ′ − ρ′′). (16)

If the forbidden components are extracted from the function sought, then the initial
equation becomes

(

T̂ρ + V̂ (ρ)− E′

)

Φ̃ (ρ) = 0, (17)

where V̂ (ρ) is a direct (double folding) potential. Usually the exchange terms are
neglected in the kinetic energy operator. In this approximation,

T̂ρ =
p̂2
ρ

2µ
. (18)
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In some cases, a quality of description of data is not high enough in the initial
version of OCM. Other versions of OCM (presented, e. g., in Refs. [9, 10]) utilize
a phenomenological local potential in contrast to the direct one and explore two
alternative ways to take into account the Pauli exclusion principle:

1. A two-body model with forbidden states which are eigenstates of the Hamil-
tonian. This version is rather simple because the redundant states are easily
excluded due to their orthogonality to the others in this case.

2. A two-body model with forbidden states which are eigenstates of the norm
kernel N̂ρ.

A possibility of adjusting the two-body local potential makes the approaches more
flexible and improves the quality of the results. At the same time, the resulting OCM
(notably with the forbidden eigenstates of the Hamiltonian) occurs to be an approx-
imation of the RGM falling far from the original model. Therefore more accurate
approximations are of interest for the theory of composite-particle interaction.

2.2 Algebraic version of RGM and the developed version

of OCM.

Within RGM, the functions ΨA1
and ΨA2

are most often considered as the ground
state (i. e. the lowest compatible with the Pauli exclusion principle) oscillator wave
functions with the same parameter ~ω. In the algebraic version of RGM, the relative
motion function is sought in the form of expansion

ϕl (ρ) =
∑

n

Cnl φnl(ρ) (19)

in oscillator basis functions φnl(ρ) (also characterized by the same parameter ~ω).
Under these conditions, the wave functions φnl(ρ) are eigenfunctions of the norm
kernel:

N̂ρ,l φnl(ρ) = εn φnl(ρ). (20)

The eigenvalues εn are equal to zero for the forbidden states and tend to unity as
n → ∞. Semi-forbidden states are defined as states with εn considerably lower then
the unity. There are rare cases for which the eigenvalues are higher than the unity.
A mathematical formalism described below also allows one to include these states in
a similar way as semi-forbidden states, thus we do not discuss this case separately.

A fundamental advantage of AV OCM is a possibility to apply the following rela-
tion presented in Ref. [11]:

〈

φnl

∣

∣

∣N̂
−1/2
ρ,l T̂ρN̂

−1/2
ρ,l

∣

∣

∣φn′l

〉

=

√

εn<

εn>

Tnn′ , (21)

where n< = min (n, n′), n> = max (n, n′) and Tnn′ is the matrix element of the
ordinary two-body kinetic energy operator between the oscillator functions. Due to
this, the set of the AV RGM equations looks as follows:

∑

n′

[
√

εn<

εn>

Tnn′ +
(

N̂
−1/2
ρ,l V̂ρ,lN̂

−1/2
ρ,l

)

nn′

− E′δnn′

]

Cn′l = 0; n ≥ nmin. (22)

So, the A-fermion exchange properties of the kinetic energy operator are precisely
determined by the eigenvalues of the norm kernel.

The approach present here allows one, first, to take into consideration the ex-
change terms of the kinetic energy completely and, second, to use an alternative
(well-grounded microscopically) way of exclusion of the forbidden states.



96 S. Yu. Igashov and Yu. M. Tchuvil’sky

It should be noted that due to the equality (21), the potential energy term V̂ρ,l

contained in Eqs. (13) and (22) remains the only term of the Hamiltonian in AV RGM
equations that includes the fermion exchange operators in the explicit form. It is just
the term which is responsible for turning out RGM into a non-universal and overcom-

plicated model. The idea is to consider the term N̂
−1/2
ρ,l V̂ρ,lN̂

−1/2
ρ,l phenomenologically,

approximating it by a local potential V̂cl(ρ). As a result, we obtain the equation

(

ˆ̃Tρ + V̂cl (ρ)− E′

)

Φ̃ (ρ) = 0. (23)

It should be noted that the choice of another scheme considering as a local potential

the term V̂ρ,l instead of N̂
−1/2
ρ,l V̂ρ,lN̂

−1/2
ρ,l , is also possible and does not present any

additional problem. The latter choice looks less reasonable because the semi-forbidden
states with small values of εn (if such values exist in a particular example) may cause
an instability in the fitting procedure of the parameters of the local potential in this
case.

The approach is called AV OCM independently of methods (which may be alge-
braic or that of “continuous” mathematics) applied to solve it.

In the algebraic versions of the canonic two-body problem, RGM as well as OCM
presented here, the expansion coefficients Cnl of Eq. (19) satisfy an infinite set of
linear equations

∞
∑

n=0

(

〈φn′lm| Ĥ |φnlm〉 − Eδn′n

)

Cnl = 0, n′ = 0, 1, ... , (24)

which follows from the respective Schrödinger equation. For ordinary bound states,
the eigenvalue problem,

det
∥

∥

∥
Ĥ − EÎ

∥

∥

∥
= 0, (25)

is solved on the truncated basis with n ≤ nmax. Here truncation means the boundary
condition Cnl = 0, n > nmax in the oscillator representation. For states of con-
tinuous spectrum (including rather broad near-barrier resonances), the convergence
of the functional series (19) is not uniform; therefore the so-called J-matrix method
[12] is applied. The expansion coefficients decrease rather slowly with n, and their
asymptotic behavior should be introduced in the set of equations:

N−1
∑

n=0

(

〈φn′lm| Ĥ |φnlm〉 − Eδn′n

)

Cnl = −
∞
∑

n=N

〈φn′lm| Ĥ |φnlm〉C(as)
nl , n′ = 0, 1, ...

(26)
The papers [6, 7, 8] were the first works in which the discussed method was applied
to solve the RGM equations.

A high-precision form of the asymptotic coefficients was obtained in Refs. [13,
14, 15]. In particular, for the wave function asymptotically behaving as an outgoing
Coulomb wave, the expansion coefficient has the following form:

C
(as)
nl =

1√
kr0ςn

{

Gl (η, kr0ςn) + iFl (η, kr0ςn)

− k3r30
6ςn

[G′

l (η, kr0ςn) + iF ′

l (η, kr0ςn)]

}

, n → ∞, (27)

where r0 =
√

~/µω is the oscillator radius, ςn =
√
2n+ 3, the prime denotes the

derivatives of the Coulomb wave functions with respect to the second argument. The
first term in the figure brackets of Eq. (27) provides a rather good approximation in
most cases.
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A related approach may be also useful for calculations of near-threshold bound
states.

The presence of the forbidden states in Eq. (20) restricts the set of equations (26)
and the sums in the left-hand side of them by the conditions n, n′ ≥ nmin. Semi-
forbidden states are taken into account by means of renormalization of the kinetic
energy matrix. The explicit form of the of the kinetic energy matrix elements (21) is
applied for that. The matrix of the renormalized kinetic energy operator (21) retains
a tridiagonal form in the oscillator basis as the initial one.

The method developed here is applicable to the calculations of phase shifts and
cross-section of composite particle scattering including calculations in the framework
of the optical model, near-threshold bound cluster-nucleus states, resonance states of
various cluster-cluster pairs excluding too narrow resonances, amplitudes of entrance
and exit channels of various reactions.

It should be noted that the one-channel formalism developed here is valid in the
case when both clusters are SU(3)-scalars (it is true for magic and light clusters) and,
in addition, one of them is an SU(4)-scalar. Otherwise a channel coupling appears
due to the antisymmetrization. As a result, some modifications of the technique are
required. The quality of the one-channel approximation in this multi-channel problem
depends on the dynamics of the channel under investigation.

2.3 AV OCM. Equivalent integro-differential equation.

In some cases it is hard to explore the direct algebraic approach presented above
because the asymptotic behavior of the expansion coefficients is achieved at too large
distances, and a huge basis in Eq. (19) is required. It is the case of a narrow resonance
in a system decaying through a two charged composite-particle channel. In this
situation, it occurs more convenient to apply methods of “continuous” mathematics.
To do this, a number of separable terms related to forbidden and semi-forbidden states
are introduced into the Hamiltonian. The idea of this rearrangement is that the initial
cluster Hamiltonian matrix elements Hnn′;l between the states at least one of which
is forbidden, are cancelled by the corresponding matrix elements of separable terms.
The kinetic energy matrix elements in the Hamiltonian are renormalized according to
the formula (21) to account for the presence of semi-forbidden states. The additional
potential term denoted as V̂ sep

l , takes the form:

V̂ sep
l = −

n0
∑

n,n′=0

|nl〉Hnn′;l 〈n′l| −
n0
∑

n=0

∞
∑

n′=n0+1

(|nl〉Hnn′;l 〈n′l|+ |n′l〉Hn′n;l 〈nl|)

+

∞
∑

n=n0+1

(
√

εn
εn+1

− 1

)

(|nl〉Tn,n+1;l 〈n+ 1, l|+ |n+ 1, l〉Tn+1,n;l 〈nl|), (28)

where

Ĥ = T̂ρ + V̂cl(ρ). (29)

Usually εn/εn+1 tends to unity rather rapidly as n increases (for example, εn=80 =
0.999 for the system 16O + 16O), therefore the sum in Eq. (28) can be truncated by
a relatively small value of n0.

Here we demonstrate an appropriate method to solve the Schrödinger equation

(

d2

dr2
+ k2 − 2Vcl;l(ρ)

)

χl(ρ) = 2V̂ sep
l χl(ρ) (30)

with the additional separable terms. The solution of this equation χl(ρ) must behave
asymptotically as Gl(η, kρ) + iFl(η, kρ) at large distances. Gl(η, kρ) exceeds signif-
icantly Fl(η, kρ) in the under-barrier domain far enough from the external turning
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point. Thus, according to Ref. [16], it is enough to satisfy the matching condition in
this region with the function Gl(η, kρ) only. Consequently, the solution χl(ρ) should
satisfy the following boundary conditions:

(i) it is regular at the origin (ρ = 0);

(ii) it behaves as Gl(η, kρ) under the barrier beyond the radius of the strong inter-
action.

To find the solution of Eq. (30), let us consider the equation

(

d2

dr2
+ k2 − 2Vcl;l(ρ)

)

χl(ρ) = 0 (31)

with a local potential Vcl;l(ρ) including the centrifugal part, and introduce its so-
lutions χ1;l(ρ) which satisfies the condition (i) and χ2;l(ρ) which satisfies (ii). The
corresponding Green’s function takes the form

G(ρ, ρ′) =
χ1;l(ρ<) χ2;l(ρ>)

W
, (32)

where ρ< = min (ρ, ρ′) , ρ> = max (ρ, ρ′), and the Wronskian W is written as follows:

W = χ1;l(ρ)
dχ2;l(ρ)

dρ
− dχ1;l(ρ)

dρ
χ2;l(ρ). (33)

This Green’s function allows one to deduce the homogeneous integral equation

χl(ρ) = −2

∞
∫

0

G(ρ, ρ′)
[

V̂ sep
l χl

]

(ρ′) dρ′ (34)

for the resonance solution χl(ρ). Here
[

V̂ sep
l χl

]

(ρ′) means the function of ρ′ which

is the result of action of the operator V̂ sep
l on the function χl(ρ). The homogeneous

equation (34) has solutions only for unique resonance energy values. Substituting V̂ sep
l

in Eq. (34) by its explicit expression (28), we obtain:

χl(ρ) = 2

n0
∑

n=0

∞
∫

0

G(ρ, ρ′) φnl(ρ
′) 〈φnl|Vcl;l |χl〉 dρ′

+ 2





∞
∫

0

dρ′ G(ρ, ρ′) φn0l(ρ
′) Tn0,n0+1;l

+

∞
∫

0

dρ′ G(ρ, ρ′) φn0+2,l(ρ
′)

(

1−
√

εn0+1

εn0+2

)

Tn0+1,n0+2;l



 〈φn0+1,l | χl〉

+ 2

nmax−1
∑

n=n0+2





∞
∫

0

dρ′ G(ρ, ρ′) φn−1,l(ρ
′)

(

1−
√

εn−1

εn

)

Tn−1,n;l

+

∞
∫

0

dρ′ G(ρ, ρ′) φn+1,l(ρ
′)

(

1−
√

εn
εn+1

)

Tn,n+1;l



 〈φnl | χl〉

+ 2

∞
∫

0

dρ′ G(ρ, ρ′) φnmax−1,l(ρ
′)

(

1−
√

εnmax−1

εnmax

)

Tnmax−1,nmax;l 〈φnmax,l | χl〉, (35)



Composite-particle interaction 99

where nmax means the maximum value of the radial quantum number of the truncated
oscillator basis. A simple form of the first term is caused by the completeness of the
oscillator basis allowing one to calculate the infinite sum over n′ in the expression (28)
explicitly.

There is an opportunity to treat Eq. (35) in the following way. Multiplying it by
〈φnl| and 〈φnl|Vcl;l one can obtain a set of homogeneous algebraic equations for the
unknown coefficients 〈φnl|χl〉 and 〈φnl|Vcl;l |χl〉. The condition of solvability (zero
value of the determinant) determines the value of Eres, after that the coefficients
〈φnl|χl〉 and 〈φnl|Vcl;l |χl〉 can be calculated. This procedure determines the func-
tion χl(ρ) and thus the width of the resonance.

However such a method of numerical calculations of widths turns out to be unsta-
ble at least for narrow resonances in systems possessing a number of semi-forbidden
states with eigenvalues of the norm kernel essentially different from the unity. In
particular, a very high accuracy (ten significant digits for the 2 MeV resonance in
the 16O+ 16O system) of the Eres value is required to calculate the width reliably.

A way to overcome this difficulty looks as follows. Consider the above mentioned
function obtained via the direct algebraic approach:

χ̃l(ρ) =

nmax
∑

n=n0+1

Cnl φnl(ρ). (36)

This function is a partial sum of the oscillator expansion of χl(ρ). It reproduces
precisely the behavior of the wave function χl(ρ) in the interior domain. It is just
what is needed to calculate the values of 〈φnl|χl〉 and 〈φnl|Vcl;l |χl〉 due to a rapid
decrease of the functions φnl(ρ), Vcl;l(ρ) and χl(ρ) with ρ. Thus, substituting χl(ρ)
in the right-hand side of the basic equation (35) by χ̃l(ρ), one can obtain the solution
for all values of ρ including the asymptotic region. Numerical calculations by means
of the proposed method occur to be significantly more stable.

The width of a narrow resonance can be obtained from the solution χl(ρ) by means
of the approach presented in the monograph [16]. According to this approach, the
following asymptotic relation

χl(ρ) ≃
√

Γk

2Eres
Gl(η, kρ) (37)

is valid in the case Gl(η, kρ) ≫ Fl(η, kρ) in the under-barrier region far enough from
the external turning point. The normalization condition

R
∫

0

χ2
l (ρ) dρ = 1 (38)

in the interior region is implied. The described above method of calculation of the
resonance wave function with the aid of Eq. (35), allows one to apply directly the
formula (37) to determining the decay width Γ.

3 AV OCM and exchange effects in decay processes

3.1 Alpha-decay of 91.84 keV 0+ resonance in 8Be

To analyze the interrelation between various approaches based on OCM and RGM
models, a canonical object of the physics of clustering, the 91.84 keV 0+ resonance in
the 8Be nucleus, was studied in Ref. [17].

The width of the ground state of 8Be nucleus which is a low-laying resonance of
the α-α system (the experimental value of the width Γ = 6.8 eV), was calculated
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in various versions of two-body, OCM and RGM dynamics. The proper resonance
energy E = 91.84 keV was achieved, if necessary, by fitting the depth of the potential
well. The following results were obtained.

For an illustration of the results obtained in two-body models with forbidden eigen-
states of the Hamiltonian, we consider the model with the Buck potential proposed
in Ref. [18] which has the form

V (ρ) = V0 exp(−bρ2) + VCoul, (39)

where
VCoul(ρ) =

(

Z1Z2e
2/ρ
)

erf(ρ/d), (40)

and parameters V0 = 122.6 MeV, b = 0.22 fm−2 and d = 1.33 fm. The fitting
is not required in this case. The value of the resonance energy E = 91.10 keV is
reproduced in this dynamics. The value of the width coincides with the experimental
one (Γ = 6.8 eV).

The same two-body model with forbidden states which are eigenstates of the
kernel N̂ρ, is used for an illustration of this type of two-body models. The procedure
of the resonance energy fit by variation of the potential well depth results in the
value V0 = 116.9 MeV. The values deduced for this version are: E = 91.84 keV,
Γ = 5.8 eV. Thus the properties of the discussed channel obtained in these two
versions of the dynamics, are close enough.

The straightforward RGM calculation using the Hasegava–Nagata NN potential
(see, for example, Ref. [19]) with no fitting results in the values E = 91.84 keV,
Γ = 4.9 eV.

At last, the OCM version with the RGM-projected kinetic energy operator (21)
and forbidden states which are eigenstates of the kernel N̂ρ, is analyzed. The Gaussian
form of the phenomenological potential with the width equal to the width of the Buck
potential (b = 0.22 fm−2), results in the values: V0 = 136.1 MeV, E = 91.84 keV,
Γ = 4.7 eV. Thus the direct inclusion of semi-forbidden states changes the local poten-
tial significantly and the results obtained in RGM are well-reproduced by AV OCM.

3.2 Asymptotic normalization coefficient

for loosely bound state of the 17F nucleus

To analyze weakly bound states in the framework of AV OCM, the closed channel
16O + p, Jπ = 1/2+ at the energy Ep = −104.94 keV was studied in Ref. [20]. This
sub-threshold resonance is actively analyzed for astrophysical purposes [21]. The
asymptotic behavior of the radial wave function in the two-body model is expressed
through the Whittaker function:

φl(ρ) → Dl W−η,l+1/2(2kρ)/ρ, (41)

where
η = Z1Z2e

2µ/~2k (42)

is the Coulomb parameter.
The asymptotic normalization coefficient Dl is the factor determining the am-

plitude of of the wave function as ρ → ∞. In the algebraic version of OCM, the
coefficients Cnl obtained as the solution of the set of equations (26) are compared
with the asymptotic ones which, by analogy with the first approximation of the for-
mula (27), take the form:

C(as)
n =

√
r0 [4/(2n+ 3)]

1/4
W−η,l+1/2(2kρn)Dl, (43)

where ρn = r0ςn is the turning point of the oscillator wave function φnl(ρ). The

matching condition Cn = C
(as)
n determines the coefficient Dl.
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Table 1: The eigenvalues of the overlap kernel for 16O+N .

n 0 2 4 6

εn 0 1.128906 1.001022 1.000006

Table 2: Depth of the nucleon-nucleus potential V0 and asymptotic normalization
coefficient Dl for the

16O+ p system within TBM and AV OCM.

Alternative V0, MeV Dl, fm
−1/2

TBM 49.24 83.33
OCM 47.61 94.18

The nucleon-nucleus potential is chosen in the form:

V (ρ) = −V0 {1 + exp [(ρ−R0) /a]}−1 + Vc(ρ), (44)

Vc(ρ) =

{

(4αe~c/Rc)(3 − ρ2/R2
c),

8αe~c/ρ,
ρ < Rc,
ρ > Rc,

(45)

where αe = e2/~c, and parameters R0 = 3.29 fm, a = 0.65 fm, Rc = 3.48 fm are
used in the model calculations. A numerical solution of the two-body Schrödinger
equation is used to test the accuracy of both two-body and the AV OCM variational
calculations.

For the discussed channel, the eigenvalues of the norm kernel which are involved in
the expression of the renormalized kinetic energy, can be calculated using the formula:

εn = 1 + (−1)n(17n− 1)/16n. (46)

They are presented in Table 1. As is seen, only εn=2 differs significantly from the
unity.

The values of the Dl coefficient are calculated both in the ordinary two-body
model (TBM) and in AV OCM with the RGM-projected kinetic energy operator
and forbidden states which are eigenstates of the kernel N̂ρ. The depth of the local
nuclear potential (44) is varied to fit the proton binding energy of 104.94 keV just in
the same manner as in the examples of the previous subsection. The results of these
calculations are presented in Table 2.

As is seen from Table 2, the inclusion of the exchange terms increases the value
of the asymptotic normalization coefficient by 10% in comparison with the two-
body one. Microscopic calculations of the asymptotic normalization coefficient in
the framework of RGM using NN potentials from Refs. [22] and [23] result in the
values of 91.15 fm−1/2 and 86.20 fm−1/2 respectively. The value of 85.65 fm−1/2 was
obtained in our RGM calculations with the Hasegava–Nagata NN potential [19].

3.3 Width of the lowest 16O + 16O resonance state

To demonstrate the effect of forbidden and the semi-forbidden states on the decay
widths of nuclear states in the case of emission of heavy clusters, let us consider the
pair 16O+ 16O as an example. Three alternatives are studied:

(I) OCM with forbidden states considered as eigenstates of the two-body Hamilto-
nian,

(II) OCM with forbidden states considered as eigenstates of the norm kernel,
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Table 3: Width of the lowest 16O + 16O resonance state for three versions of the
interaction (see the text).

Alternative (I) (II) (III)

V0, MeV 399.2 225.6 422.8
Eres, MeV 2.103 2.103 2.102
Γ, MeV 0.59·10−27 0.53·10−28 0.64·10−35

(III) OCM with forbidden states of the latter type and semi-forbidden states.

The local cluster-cluster potential from Ref. [24]

Vcl (ρ) = VCoul (ρ) +
V0

(1 + exp [(ρ−R) /a])
2 (47)

is considered. The Coulomb part is chosen in the form of interaction potential of two
uniformly charged spherical volumes. According to one of the versions of the model
used in Ref. [24], there are 12 forbidden states (eigenstates of the Hamiltonian with
the interaction (47)) and a narrow resonance state at the energy of E = 2.103 MeV
in the partial wave with l = 0. This result is reproduced in our calculations realiz-
ing the alternative (I). For the alternatives (II) and (III), the depth V0 of the local
potential Vcl (ρ) is varied to restore the resonance energy of the alternative (I). The
values of the decay width for three versions of OCM are presented in Table 3. The
resonance energy is presented to demonstrate the accuracy of its reproduction.

It is clear from the Table that the forbidden and notably the semi-forbidden states
change drastically the decay width. If the forbidden states are considered as eigen-
states of the norm kernel, the value of the width Γ becomes one order of magnitude
smaller than the one obtained assuming these states to be the eigenstates of the two-
body Hamiltonian. If, in addition, the semi-forbidden states are also considered, the
value of the width Γ turns out to be eight orders of magnitude smaller. Thus a very
pronounced exchange effect manifests itself in the properties of a resonance decaying
through a channel with a long list of semi-forbidden states which differ significantly
from the unity.

It should be noted that parameters of the 16O + 16O channel (the penetrability
of the barrier, the eigenvalues of the norm kernel for the semi-forbidden states, the
Γ values) are more or less close to the ones typical for alpha-decays of heavy nuclei.
Therefore one may expect similar exchange effects in the latter process.

4 Summary

In the present paper, results of the study of a new version of the orthogonality condi-
tions model are demonstrated in details. The model allows one to take into account
exchange effects originating from the norm and kinetic energy overlap kernels. Both
continuous and pure algebraic formalisms of the model are developed. The former
one is used for the calculation of decay widths of very narrow resonances. The pairs
of particles α + α, 16O + p and 16O + 16O are given as examples. The results of the
study demonstrate that:

1. Properties of interaction of composite particles are essentially different from the
ones of structureless particles.

2. The basic cause of the differences is the exchange effects manifesting themselves
via forbidden and semi-forbidden states.
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3. Algebraic approaches are convenient tools for considering these effects.

4. The methods developed here for description of composite particle interaction
are applicable to the calculations of:

a) phase shifts and cross-sections of composite particle scattering including
calculations in the framework of the optical model,

b) near-threshold bound cluster-nucleus states,

c) resonance states of various cluster-cluster pairs including very narrow res-
onances,

d) amplitudes of entrance and exit channels of various reactions.

5. The formalism developed is valid in the case of both clusters being SU(3)-scalars
and additionally one of them being an SU(4)-scalar.

6. The effect of semi-forbidden states is drastic in calculations of widths of narrow
resonances in interaction of a heavy nucleus with alpha-particle or in interaction
of two heavy clusters.

References

[1] J. A. Wheeler, Phys. Rev. 52, 1083 (1937).

[2] J. A. Wheeler, Phys. Rev. 52, 1107 (1937).

[3] T. Fliessbasch and H.-J. Mang, Nucl. Phys. A 263, 75 (1976).

[4] S. Saito, Progr. Theor. Phys. 41, 705 (1969).

[5] S. Yu. Igashov, Yu. F. Smirnov and Yu. M. Tchuvil’sky, Bul. Rus. Acad. Sci.
Phys. 73, 756 (2009).

[6] G. F. Filippov and I. P. Okhrimenko, Phys. At. Nucl. 33, 932 (1980).

[7] G. F. Filippov and I. P. Okhrimenko, Phys. At. Nucl. 32, 928 (1980).

[8] I. P. Okhrimenko, Nucl. Phys. A 424, 121 (1984).

[9] V. G. Neudatchin, V. I. Kukulin, A. N. Boyarkina and V. P. Korennoy, Lett.
Nuovo Cimento 5, 834 (1971).

[10] V. G. Neudatchin, V. I. Kukulin, V. L. Korotkikh and V. P. Korennoy, Phys.
Lett. B 34, 581 (1971).

[11] H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977).

[12] H. A. Yamani and L. Fishman, J. Math. Phys. 16, 410 (1975).

[13] S. Yu. Igashov, in The J-Matrix Method. Developments and Applications, edited
by A. D. Alhaidari, E. J. Heller, H. A. Yamani and M. S. Abdelmonem. Springer,
2008, p. 49.

[14] S. Yu. Igashov, Comp. Math. Math. Phys. 43, 78 (2003).

[15] S. Yu. Igashov, Bul. Rus. Acad. Sci. Phys. 65, 104 (2001).

[16] S. G. Kadmensky and V. I. Furman, Alpha-decay and related nuclear reactions.
Energoatomizdat, Moscow, 1985 (in Russian).



104 S. Yu. Igashov and Yu. M. Tchuvil’sky

[17] S. Yu. Igashov, A. V. Sinyakov and Yu. M. Tchuvil’sky, Bul. Rus. Acad. Sci.
Phys. 74, 1608 (2010).

[18] B. Buck, H. Fridrich and C. Wheatny, Nucl. Phys. A 275, 246 (1977).

[19] H. Kanada, T. Kaneko, S. Nagata and M. Nomoto, Prog. Theor. Phys. 61, 1327
(1979).

[20] S. Yu. Igashov, A. V. Sinyakov and Yu. M. Tchuvil’sky, Bul. Rus. Acad. Sci.
Phys. 74, 1612 (2010).

[21] D. Baye, P. Descouvemont and M. Hesse, Phys. Rev. C 58, 545 (1998).

[22] A. B. Volkov, Nucl. Phys., A74, 33 (1965).

[23] D. R. Tompson, M. LeMere and Y. C. Tang, Nucl. Phys. A 286, 53 (1977).
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