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Abstract

We propose a phase-equivalent transformation of NN interaction of a new
type, the DET-PET transformation, which does not affect the wave function of
the bound system (deuteron). The DET-PET properties and its manifestation in
many-body systems are studied. In particular, we investigate the correlation of
the 3H and 4He binding energies (Tjon line) in calculations with NN potentials
obtained by means of DET-PET from the JISP16 NN interaction.
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1 Introduction

One of the best ab initio approaches in the theory of light atomic nuclei is the No-core
Full Configuration (NCFC) approach [1] based on extrapolation of results obtained
in the No-core Shell Model (NCSM) calculations [2]. This approach does not imply
any model assumption, a nucleon-nucleon interaction is the only input information
utilized by NCFC. The NCFC approach was designed for calculations with the J-
matrix Inverse Scattering Potentials (JISP) [3–5], the NN interactions obtained in
the J-matrix inverse scattering approach, and was carefully tested in calculations
with these NN interactions (see, e. g., Ref. [6–9]). Various versions of JISP inter-
actions are related by phase-equivalent transformations (PETs) which do not affect
the NN potential on-shell and hence preserve description of scattering phase shifts
and deuteron binding energy, however modify the potential off-shell and therefore the
description of few-body systems. A remarkable feature of JISP-type potentials is that
they are able to reproduce nuclear properties without three-body nuclear forces reduc-
ing significantly the computer resources required for calculations. Up to now, nuclear
studies were mostly performed [6–9] with the JISP16 interaction version [5, 10]; a
more accurate interaction version JISP162010 providing a better description of the
binding energies of A ≥ 10 nuclei, was introduced [11–13].

Recently we proposed a new type of PETs, a deuteron-equivalent transformation
(DET-PET) [14], which properties we discuss here. Contrary to conventional PETs
resulting in the modification of potential and bound state wave functions [3, 15–17],
DET-PET guarantees that the transformed interaction generates not only the same
scattering phase shifts but also the same bound state (deuteron) wave function as
the initial untransformed interaction. To the best of our knowledge, such PETs have
not been ever discussed in literature. Obviously, DET-PET preserves the description
of deuteron observables. DET-PET, as well as any other PET, modifies a two-body
interaction off-shell, and hence can be used for fitting potentials to many-body systems
without violation of high-quality description of two-body data.
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After introducing DET-PET, we discuss the DET-PET modification of the JISP16
NN interaction providing an accurate description of light nuclei [1, 2, 6–9]. A DET-
PET manifestation in many-body systems is illustrated by the study 3H and 4He
binding energies and their correlation (the so-called Tjon line [18]) in particular.

2 Theory

Two types of PETs are known in scattering theory: local PETs [15] that transform
a local potential into another local potential and nonlocal PETs [16] which generate
nonlocal potential terms. We focus the discussion here on nonlocal PETs.

The Schrödinger equation

HΨ(E, r) = EΨ(r) (1)

describes a relative motion in two-body quantum system. The wave function Ψ(r) can
be expanded in infinite series of L2 functions which are supposed to form a complete
orthonormalized basis. We denote these functions by |an〉, their orthonormalization
condition is

〈ai|aj〉 = δij , (2)

and the wave function expansion is

Ψ(E, r) =

∞
∑

n=0

cn(E)|an〉. (3)

Using this expansion we obtain an infinite set of algebraic equations defining the
expansion coefficients cn(E),

∞
∑

n′=0

(Hnn′ − δnn′E)cn′(E) = 0, (4)

where Hnn′ = 〈an|H |an′〉 are the Hamiltonian matrix elements..

A phase-equivalent transformation of Hamiltonian H can be defined by means of
a unitary transformation,

[H̃ ] = [U ][H ][U †], (5)

where [H ] is the Hamiltonian H matrix in basis {|an〉}. The infinite unitary matrix
[U ] is supposed to be of the form

[U ] = [U0]⊕ [I] =

[

[U0] 0
0 [I]

]

, (6)

where [I] is an infinite unit matrix and [U0] is a finite matrix mixing only a few low-
lying states in a given basis. The Hamiltonian H̃ is defined through its matrix [H̃ ] in
the initial basis {|an〉}.

Obviously, the Hamiltonians H̃ and H have identical eigenvalue spectra and their
eigenfunctions Ψ̃(E, r) and Ψ(E, r) differ by a linear combination of a finite number
of functions {|an〉}. Any superposition of a finite number of L2 functions does not
affect asymptotics of scattering wave functions, hence the Hamiltonian H̃ is phase-
equivalent to the initial Hamiltonian H .

The unitary operator U0 can be written as

U0 =
∑

i,j6N ′

|ai〉Ũ
0
ij〈aj |. (7)



42 V. A. Kulikov, A. M. Shirokov, A. I. Mazur, J. P. Vary and P. Maris

|ai〉 in Eq. (7) can be any L2 function, e. g., any oscillator function ϕl or any linear
combination of oscillator functions ϕl. We shall use DET-PETs with the functions
|ai〉 defined as

|ai〉 =
∑

l6N ′′

αl
iϕl, (8)

supposing that they fit the orthonormalization condition (2).
The transformation (5) becomes a DET-PET, i. e. it does not affect the deuteron

wave function |d〉, when each of the functions |ai〉 in Eq. (7) is orthogonal to |d〉:

〈ai|d〉 = 0. (9)

At this stage, we assert that we have obtained our DET-PET defined through
the unitary transformation (5) with additional constraints (2), (7)–(9). The simplest
DET-PET is obtained with arbitrary unitary matrix [U0] of the rank 2. In this case,
[U0] is associated either with a rotation by the angle β, when detU0 = +1 (we will
use the index + to denote these transformations) or with a rotation by the angle β

combined with reflection when detU0 = −1 (these type of transformations will be
denoted by the index −).

We need to specify not only the unitary matrix but also the vectors |a1〉 and |a2〉
to define completely the simplest DET-PET. We use the deuteron wave function |d〉
to construct these vectors.

The function |d〉 can be expanded in infinite series of oscillator functions ϕi,

|d〉 =
∞
∑

i=0

diϕi, (10)

where, generally, all the coefficients di are non-zero,

di 6= 0. (11)

Since the vectors |a1〉 and |a2〉 should fit Eq. (9), none of them can be one of the
basis functions ϕi due to Eq. (10)-(11). The simplest way to construct the vectors |a1〉
and |a2〉 is to define each of them as a linear combination of two different oscillator
functions ϕ1 and ϕ2,

|a1〉 = an1 ϕn + am1 ϕm, (12)

|a2〉 = ak2 ϕk + al2 ϕl, (13)

The normalization of these vectors requires

(an1 )
2
+ (am1 )

2
= 1, (14)

(

ak2
)2

+
(

al2
)2

= 1. (15)

Using Eqs. (9) and (10), we obtain

an1 dn + am1 dm = 0, (16)

ak2 dk + al2 dl = 0. (17)

The solution of Eqs. (14) and (16) can be written as

an1 = +
dm

√

d2n + d2m
, (18a)

am1 = −
dn

√

d2n + d2m
; (18b)
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the same type solution of Eqs. (15) and (17) for the vector |a2〉 is

ak2 = +
dl

√

d2k + d2l
, (19a)

al2 = −
dk

√

d2k + d2l
. (19b)

We need to find all coefficients an1 , a
m
1 , ak2 , a

l
2 fitting the orthogonality condition

〈a2|a1〉 = 0. (20)

It means that all indexes k, l, m, n should be different, i. e., vectors |a1〉 and |a2〉
should be superpositions of different oscillator functions.

To define completely the simplest DET-PET, we need to fix the rotation angle β,
the index ± related to the sign of detU0, and the set of four oscillator functions used
to build the vectors |a1〉 and |a2〉. To distinguish various DET-PET types we use
notations like 0s2s1s2d±. In this example, the vector |a1〉 is a linear combination of
the oscillator states 0s and 2s, the vector |a2〉 is a linear combination of the oscillator
states 1s and 2d and detU0 = ±1 respectively.

3 Results

We study modifications of JISP16NN interaction induced by DET-PET. Vectors |a1〉
and |a2〉 [see Eqs. (12), (13)] are constructed as various superpositions of two low-lying
oscillator functions 0s, 1s, 2s, 3s, 0d and 1d. It is interesting to explore DET-PETs
acting in the s channel only and compare them with DET-PETs mixing s and d

channels in different ways. It is interesting also to investigate the transformations
associated with both pure rotation and a rotation-reflection combination in case of
each DET-PET type.

Plots of the np scattering wave functions in the sd coupled partial waves at labo-
ratory energy Elab = 10 MeV are presented in Figs. 1–3 in the K-matrix formalism.
We use here the nomenclature and terminology adopted in Ref. [3]. The DET-PET
0s2s1s3s± modifies significantly the large s wave component as is seen in Fig. 1. The
modification of the small s wave component is much less pronounced. The d wave
components, as expected, are nearly unaffected by 0s2s1s3s±. We observe modi-
fications of both waves by DET-PETs 0s1s0d1d± and 1s0d0s1d± in Figs. 2 and 3,
however, unlike the previous case, they are more pronounced in the small components
of the scattering wave function since the DET-PETs mix s and d waves in these cases.
We see that DET-PETs are able to generate essential modifications of scattering wave
functions.

The NCSM calculations involve two basic parameters: the oscillator spacing ~Ω
and model space dimension associated with the maximal excitation quanta Nmax. It
has been proposed [1] to use the ~Ω and Nmax dependences to improve the results
of calculations (the NCFC approach). Based on these dependences, we extrapolate
the NCSM results to the infinite basis space limit and estimate the accuracy of the
extrapolation. NCFC suggests two extrapolation methods: extrapolation A and ex-
trapolation B [1]. The extrapolations A and B usually provide consistent results. We
present here only the extrapolation A results based on the NCSM calculations with
model spaces up through Nmax = 16; we checked the consistency of our results with
the ones obtained by extrapolation B in a number of cases. The evaluated uncertain-
ties of results for binding energies presented here are less then 10 keV in most cases;
in a few cases, we performed the NCSM calculations up to Nmax = 18 to obtain the
binding energies with uncertainty of about 10 keV.
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Figure 1: Large and small components of the np scattering wave function at the
laboratory energy Elab = 10 MeV in the sd coupled partial wave in the K-matrix
formalism (see Ref. [3] for details and nomenclature) generated by JISP16 and NN

interactions obtained from JISP16 by means of DET-PET 0s2s1s3s±. The sign of
detU0 is given in the legends in parenthesis after the value of rotation angle β.

The binding energies of 3H and 4He nuclei were calculated with JISP16 NN inter-
action modified by DET-PETs 0s2s1s3s±, 0s1s0d1d± and 1s0d0s1d±. The ranges of
3H and 4He binding energy variations for each DET-PET type are shown in Table 1.
We see that the 4He binding energy Eα can be varied by DET-PETs on the interval
from 21.25 through 30.41 MeV, i. e., DET-PET can change Eα by more than 7 MeV

Table 1: Ranges of 3H and 4He binding energy variations (in MeV) caused by various
types of DET-PET in comparison with the binding energies obtained with JISP16
and their experimental values.

3H 4He 3H 4He 3H 4He

0s2s1s3s+ 0s1s0d1d+ 1s0d0s1d+

7.2–8.37 21.25–28.49 7.67–8.41 23.50–28.83 7.98–8.64 25.79–30.36
0s2s1s3s− 0s1s0d1d− 1s0d0s1d−

7.25–8.35 21.46–28.59 7.68–8.39 23.46–28.91 8.05–8.67 26.18–30.41
JISP16 Experiment

8.369(1) 28.299(1) 8.482 28.296
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Figure 2: Same as Fig.1 but for DET-PET 0s1s0d1d±.

from its original value provided by the original JISP16 interaction. In the case of 3H
the range of the DET-PET binding energy variation is 7.21 ≤ Et ≤ 8.67, i. e., the 3H
binding energy Et can be shifted by DET-PET by 1 MeV from its original JISP16
value.

The Tjon line [18] is a correlation of the 3H and 4He binding energies which was
usually studied using results obtained with various NN interaction models allowing
for two-nucleon forces only or various combinations of NN and NNN interactions
(see, e. g., Ref. [19]). Here we study the Tjon line using families of NN potentials
generated by DET-PET with continuous parameter which generate the same deuteron
wave function. Two types of Tjon lines are shown in the each of Figs. 4-6. For each of
DET-PETs mixing a particular combination of partial wave components, one of the
Tjon line types corresponds to the case of pure rotation while the other corresponds to
the rotation-reflection transformation. The symbols at the curves present the results
obtained with different values of the angle β in the range from 0◦ through 360◦. We use
the step 60◦ for smooth regions of the curves and 30◦ in some cases around extremums
of the 3H and 4He binding energies which are found usually around 180◦ and 360◦. In
addition to our results, we present in the figure also the experimental value and results
of Refs. [19, 20, 21], obtained with other potential models which involve either two-
nucleon forces only or combinations of two-nucleon and three-nucleon interactions.

We begin the discussion of the Tjon lines from the results obtained with the
1s0d0s1d±. It is seen from the Fig. 4 that our results are concentrated close to
the Tjon line connecting the points extracted from other interactions. We recall here
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Figure 3: Same as Fig.1 but for DET-PET 1s0d0s1d±.
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Figure 4: Tjon line obtained with DET-PET 1s0d0s1d± in comparison with results
obtained with variousNN andNN+NNN interaction models from Refs. [19, 20, 21].



Deuteron-equivalent phase-equivalent transformation 47

7.6 7.8 8 8.2 8.4
E

t
 (MeV)

23

24

25

26

27

28

29

30

E
α (

M
eV

)

0s1s0d1d
+

0s1s0d1d
-

Experiment
JISP16
NN+NNN interactions
NN interactions

DET-PET 0s1s0d1d
±

Tjon line

Figure 5: Same as Fig. 4 but for DET-PET 0s1s0d1d±.

that this DET-PET leave the large wave function components nearly unchanged while
modifies essentially the small components as is seen from Fig. 3; such transformations
correspond to strong modification of the tensor component of NN interaction.

Now we turn the discussion to the DET-PET 0s1s0d1d±. In this case, the DET-
PET results in a very different range of binding energies variations (see the Table 1
and Fig. 5). The binding energies in this case are also correlated along a nearly
straight line, however this line has a very different slope. As a result, our binding
energy correlations around the maximal 3H and 4He binding energies accessible by this
DET-PET are consistent with the correlations derived from other interaction models;
however our correlations deviate from those obtained with other interactions as the
binding energies decrease and the difference between our correlations and derived
from other potential models become essential around the minimal binding energies.
We have also a strong modification of the tensor component of the NN force in this
case as seen in Fig. 2.

Let us discuss now the DET-PET 0s2s1s3s±. It results in the 3H and 4He binding
energy correlation shown in Fig. 6. We see that in this case the Tjon lines transform
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Figure 6: Same as Fig. 4 but for DET-PET 0s2s1s3s±.
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into closed-loop curves surrounding large enough areas. In the case of the DET-PET
0s2s1s3s− our Tjon curve surrounds the line derived from other NN interactions.
The DET-PET 0s2s1s3s+ generates the Tjon curve shifted down from the Tjon line
suggested by other interactions. This DET-PET 0s2s1s3s± mixes only s-waves and
does not affect the tensor component of the NN forces (see Fig.1.)

4 Conclusions

We have introduced [14] a new type of phase-equivalent transformations, DET-PET,
preserving the deuteron wave function and investigated transformations of the JISP16
NN interaction induced by few DET-PET versions mixing oscillator components in
various combinations. We demonstrated that DET-PETs are able to modify signif-
icantly the np scattering wave functions. We studied DET-PET manifestations in
the binding energies of 3H and 4He nuclei and found out that these bindings can be
significantly changed by DET-PETs. We investigated also the correlation of these
binding energies and found out that DET-PETs with some values of their param-
eters can significantly modify this correlation; more, in some cases, this correlation
is washed out by DET-PET as compared with the conclusions based on the results
obtained with other potential models. We speculate that DET-PET can be helpful
in the further development of JISP-like NN interactions. It would be interesting to
study DET-PET manifestations in binding energies and other observables of heavier
nuclei.
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