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Abstract

We use algorithms of computational group theory to perform ab initio no-
core shell model calculations in a SU(3)-based coupling scheme for p-shell nuclei.
Details given for 6Li are reflective of similar results found for 8B, 8Be, 12C, and
16O, all of which exhibit a strong preference for large quadrupole deformations
and a narrow set of intrinsic spin quantum numbers. Our results suggest that
a small subspace of symmetry-adapted configurations can very closely approx-
imate the exact solutions while allowing for exact factorization of the center-
of-mass degrees of freedom. This, in turns, promises to allows us to extend
the reach of the ab initio framework for structure and reaction studies towards
sd-shell nuclei and beyond.
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1 Introduction

Theoretical advances achieved in recent years in the development of realistic nuclear
potential models [1, 2, 3, 4] along with progress in high performance computing have
placed ab initio many-particle approaches [5, 6, 7] at the frontier of nuclear structure
explorations. The ab initio methods are built on fundamental principles and therefore
hold promise to provide predictive capabilities essential for a description of the struc-
ture and reactions of unstable and exotic nuclei, many of which are of high interest,
e. g., in nucleosynthesis, but remain inaccessible even to experiment.

The no-core shell model (NCSM) [5] is a prominent ab initio method that has
achieved a good description of low-lying states and associated spectroscopic properties
up through p-shell nuclei [8, 9, 10]. The NCSM typically employs the Lanczos algo-
rithm to solve the eigenvalue problem for a realistic Hamiltonian. Matrix elements of
the Hamiltonian are calculated in a many-particle basis of m-scheme states, which are
constructed as an antisymmetrized product of the harmonic oscillator single-particle
wave functions, and carry the z-component of the total angular momentum along with
the total parity as good quantum numbers. The main limitation of this approach,
and the predictive power thereof, is inherently coupled with the combinatorial growth
in the size of the many-particle model space with increasing nucleon numbers and
expansion in the number of single-particle levels in the model space.

We developed an innovative ab initio model, the symmetry-adapted no-core shell
model (SA-NCSM), which utilizes a many-particle basis that exploits the physically
relevant SU(3)⊃SO(3) group-subgroup chain. The significance of the SU(3) group for
a microscopic description of the nuclear collective dynamics can be readily seen from
the fact that it is the symmetry group of the Elliott model [11], and a subgroup of
the Sp(3,R) symplectic model of nuclear collective motion [12, 13]. The concept of
symmetry-adapted many-particle basis represents a powerful tool that allows one to
winnow a model space to correlations indispensable for modeling important modes
of nuclear collective dynamics, specifically nuclear deformation and cluster substruc-
tures, thereby overcoming the scale explosion bottleneck of ab initio nuclear structure
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computations. Hence, the SA-NCSM framework holds promise to expand dramati-
cally the reach of current ab initio approaches toward describing heavier mass nuclei
with unprecedented accuracy.

2 Ab initio calculations in SU(3)-scheme basis

The basis states of the SA-NCSM are constructed in the proton-neutron formalism and
are labeled by the physical SU(3)⊃SO(3) subgroup chain quantum numbers (λµ)κL,
and by proton, neutron, and total intrinsic spins Sp, Sn, and S. The orbital angular
momentum L is coupled with S to the total angular momentum J and its projection
MJ . Each basis state is thus labeled in the SU(3)-scheme as

|~αN(λµ)κL;SpSnS; JMJ〉, (1)

where N signifies the number of harmonic oscillator quanta with respect to the mini-
mal number for a given nucleus. The deformation-related (λµ) set of quantum num-
bers labels SU(3) irreducible representations (irreps) and bring forward important
information about nuclear shapes and deformation. For example, (00), (λ 0) and
(0µ) describe spherical, prolate and oblate shapes, respectively. The label κ distin-
guishes multiple occurrences of the same L value in the parent irrep (λµ). The symbol
~α schematically denotes the additional quantum numbers needed to unambiguously
distinguish between irreps carrying the same N (λµ)SpSnS quantum numbers. These
irreps compose a well-defined subspace with a unique feature that allows for the com-
plete separation of intrinsic and center-of-mass degrees of freedom [14].

The SA-NCSM implements a set of powerful algorithms [15, 16] which facilitate
calculations of matrix elements of arbitrary (currently up to two-body, but expand-
able to higher-rank) operators in the SU(3)-scheme basis. This allows for both the
evaluation of the Hamiltonian matrix elements, and the use of the resulting eigenvec-
tors to evaluate other experimental observables. The underlying principle behind the
SA-NCSM computational kernel is the SU(3) Wigner-Eckhart theorem, which allows
the problem to be factorized into SU(3) reduced matrix elements (RMEs) and SU(3)
coupling/recoupling coefficients. The former are calculated from a set of single-shell
RMEs by the repetitive application of the SU(3) reduction formula for RMEs of op-
erators acting on two independent proton and neutron subsystems, while the latter
are computed using a publicly available library [17].

3 Structure of nuclear wave functions

Here we use the SA-NCSM with the bare JISP16 NN interaction [1] to calculate
binding energies and determine low-lying eigenstates of 6Li, 8Be, 12C, and 16O nuclei.
The resulting wave functions are used to determine values or physical observables
such as point-particle root-mean-square (rms) matter radii, electric quadrupole mo-
ments, magnetic dipole moments, reduced electromagnetic B(E2) and B(M1) tran-
sition strengths.

The expansion of calculated wave functions in a physically relevant SU(3)-scheme
basis is illuminating salient features that emerge from the complex dynamics of
strongly interacting many-particle systems. To explore the nature of the most im-
portant correlations, the probability distribution of intrinsic spins (Sp Sn S) and
deformation-related (λµ) quantum numbers of SU(3) for the lowest-lying T = 0
states of 6Li were analyzed. Figure 1a shows the probability distribution of intrinsic
spins across their Pauli-allowed deformations in the ground state of 6Li. This figure
illustrates a facet common to low-energy solutions considered: a highly structured and
coherent mix of intrinsic spins and SU(3) spatial quantum numbers that has hereto-
fore gone unrecognized in other ab initio studies. These results clearly corroborate
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Figure 1: Probability distribution of proton, neutron, and total intrinsic spins
(Sp Sn S) across their Pauli-allowed (λµ) deformations (horizontal axis) in the ground
1+ state of 6Li (a) and the ground 0+ state of 8Be (b) obtained with JISP16 bare in-
teraction for ~Ω = 20 MeV in Nmax = 10 (a) and Nmax = 8 (b) full model spaces. The
area of each circle is proportional to the total probability of N (λµ)SpSnS states nor-
malized with respect to the total probability of N (2+N 0) 1

2

1

2
1 and N (4+N 0) 0 0 0

stretched states, respectively.

the much earlier phenomenological work carried out within the context of the Elliott
SU(3) model [11].

Specifically, we found that over 99% of the SA-NCSM eigenstates are accounted
for by a small fraction of intrinsic spin combinations. For instance, the lowest-lying
eigenstates in 6Li are almost entirely realized in terms of configurations characterized
by the following intrinsic spin (Sp Sn S) quantum numbers: (3

2

3

2
3), (1

2

3

2
2), (3

2

1

2
2),

and (1
2

1

2
1), with the last one carrying over 90% of each eigenstate. Likewise, the same

spin components as in the case of 6Li are found to dominate the ground state and the
lowest 1+, 3+, and 0+ excited states of 8B (Table 1). Similarly, the ground state band
of 8Be and 12C along with the ground state of 16O are found to be dominated by many-
particle configurations carrying total intrinsic spin of the protons and neutrons equal
to zero and one, with the largest contribution due to (Sp Sn S) = (0 0 0) configurations.
This is illustrated in Figure 1b for the ground state of 8Be.

The mixing of (λµ) spatial quantum numbers induced by the SU(3) symmetry
breaking terms of realistic interactions, exhibits a remarkably simple coherent pat-
tern. One of its key features is the preponderance of a single 0~Ω SU(3) irrep, the
so-called leading irrep, that is, the one characterized by the largest value of the sec-
ond order SU(3) Casimir invariant, Ĉ2, and hence corresponding to a large intrinsic
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Table 1: Probability amplitude of the dominant (Sp Sn S) spin configuration and the
dominant nuclear shapes according to Eq. (2) for the ground state of p-shell nuclei.

Nucleus (Sp Sn S) Prob. [%] (λ0 µ0) Prob. [%]
6Li (1

2

1

2
1) 93.26 (2 0) 98.13

8B (1
2

1

2
1) 85.17 (2 1) 87.94

8Be (0 0 0) 85.25 (4 0) 90.03
12C (0 0 0) 55.19 (0 4) 48.44
16O (0 0 0) 83.60 (0 0) 89.51

quadrupole deformation [18]. For instance, the low-lying T = 0 states of 6Li project
at 40%-70% level onto the prolate-like 0~Ω SU(3) irrep (2 0). For the considered
states of 8B, 8Be, 12C, and 16O, qualitatively similar dominance of the leading 0~Ω
SU(3) irreps is observed – (2 1), (4 0), (0 4), and (0 0) irreps, associated with triaxial,
prolate, oblate, and spherical shapes, respectively. Such a clear dominance of the
largest 0~Ω deformation within the low-lying states of p-shell nuclei points to the fact
that the effective quadrupole-quadrupole interaction of the Elliott SU(3) model of
nuclear rotations [11] is realized naturally within the framework of modern realistic
interactions.

The analysis reveals that the dominant SU(3)-scheme states at eachN~Ω subspace
are typically those with (λµ) quantum numbers such that

λ+ 2µ = λ0 + 2µ0 +N, N = 0, 2, . . . , (2)

where λ0 and µ0 denote labels of a leading SU(3) irrep at the 0~Ω (N = 0) subspace
(Table 1). We conjecture that this coherent pattern of SU(3) quantum numbers
reflects the presence of an underlying symplectic Sp(3,R) symmetry of microscopic
nuclear collective motion [12] that governs the low-energy structure of both even-even
and odd-odd p-shell nuclei. This can be seen from the fact that configurations with a
(λµ) shape that satisfies condition (2) can be determined from the leading SU(3) irrep
(λ0 µ0) through a successive application of a specific subset of the Sp(3,R) symplec-
tic 2~Ω raising operators. This subset is composed of the three operators, Âzz , Âzx,
and Âxx, that distribute two oscillator quanta in z and x directions, but none in
y direction, thereby inducing SU(3)-scheme configurations with ever-increasing val-
ues of the Casimir invariant Ĉ2. These three operators are the generators of the
Sp(2,R) ⊂ Sp(3,R) subgroup [19], and give rise to a hierarchy of deformed shapes
that are energetically favored by an attractive quadrupole-quadrupole interaction [13].
Furthermore, there is an apparent hierarchy among states that fulfill condition (2).
In particular, the N~Ω configurations with (λ0+N µ0), the so-called stretched states,
carry a noticeably higher intensity than the others. For instance, the (2+N 0)
stretched states contribute at the 85% level to the ground state of 6Li. The sequence
of the stretched-states, that is, the states with the highest possible deformations, can
be formed from many-nucleon correlations of a leading SU(3) irrep by application of
the Âzz operator, which is the generator of Sp(1,R) ⊂ Sp(2,R) ⊂ Sp(3,R) subgroup.

The revealed pattern of intrinsic spin and deformation mixing supports a sym-
metry guided truncation of the Nmax model space. Clearly, one can take advantage
of the physical relevance of the SU(3)-scheme basis to winnow the full space down
to the most relevant configurations that support the strongest many-nucleon corre-
lations of the system using the underlying Sp(1,R) ⊂ Sp(2,R) ⊂ Sp(3,R) symmetry
considerations. As noted previously, this truncation, while significantly reducing the
size of the model space, also preserves the ability to factor out exactly the spurious
center-of-mass degrees of freedom.
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Figure 2: Pauli-allowed (λµ) deformations and their proton, neutron, and total intrinsic spins (Sp Sn S) for the positive-parity J = 1 states of 6Li
spanning the full Nmax = 12 model space. Each circle represents basis states carrying the same N (λµ)SpSnS quantum numbers, with the radius
being proportional to log10 of the number of such states. Configurations symbolized by the filled circles constitute the symmetry-truncated model
space 12[6].
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4 Efficacy of the SU(3) basis

To probe the adequacy of the symmetry-adapted approach for the ab initio modelling
of nuclear structure, we used the calculated eigenstates to determine spectroscopic
properties of low-lying T = 0 states of 6Li using a model space winnowed through
symmetry considerations, and compared the outcomes with the corresponding results
obtained in the full Nmax = 12 space. In the study, Coulomb and bare JISP16 NN

interactions were used for ~Ω oscillator strengths ranging from 17.5 up to 25 MeV.
The selected model space, depicted in Fig. 2 and denoted by 12[6], incorporates all
configurations carrying excitations up to 6 oscillator quanta (labeled by [6]) and only
a subset of the shapes and a few intrinsic spin components to realize the leading
modes of nuclear collective motion for the higher 8~Ω, 10~Ω and 12~Ω configurations.
The model space 12[6] constitutes a small percentage of the full space. For example,
the full Nmax = 12 model space dimension is 4.9× 107 whereas the dimensions of the
12[6] subspaces with total angular momenta J = 1, J = 2, and J = 3, are 4.3 × 105

(0.87%), 6.5× 105 (1.32%), and 8.3× 105 (1.70%), respectively.

The ground state binding energies calculated in 12[6] for oscillator energy ~Ω rang-
ing from 17.5 to 25 MeV represent from 98% up to 98.7% of the full-space binding
energy. Furthermore, the excitation energies of 3+1 , 2

+
1 , and 1+2 states calculated in

12[6] model space differ only by 20 keV to a few hundreds of keV from the corre-
sponding full-space results, see Fig. 3.

As illustrated in Table 2 for ~Ω = 17.5 MeV, the magnetic dipole moments agree
to within less than about 0.3%, or 5% for the µ(2+1 0). As the dipole moment is a
short-range operator, the results suggest that it may suffice to include all low-lying ~Ω
states up to a fixed limit, e. g. Nmax = 6 for 6Li, to account for the most important
short-range correlations.

To explore how closely one comes to reproducing the important long-range corre-
lations of the full Nmax = 12 space in terms of nuclear collective excitations within the
more restricted 12[6] space, we compared observables that are sensitive to the tails
of the wave functions; specifically, the point-particle rms matter radii, the electric
quadrupole moments and the reduced electromagnetic B(E2) transition strengths.
The results for the rms matter radii, listed in Table 2 for ~Ω = 17.5 MeV, agree to
within 1%. Similarly, the 12[6] eigensolutions yield results for these quantities that
track very closely with their full [12] space counterparts for all values of ~Ω, as can be
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Figure 3: Experimental and theoretical excitation energies of T = 0 states of 6Li.
Theoretical estimates were obtained at ~Ω = 22.5 MeV in the full Nmax = 12 (middle)
and the symmetry-truncated 12[6] (right) model spaces.
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Table 2: Magnetic dipole moments µ [µN ] and point-particle rms matter radii [fm]
of T = 0 states of 6Li calculated in the full Nmax = 12 and 12[6] model spaces for
~Ω = 17.5 MeV. The experimental value for the 1+ ground state is known to be
µ = +0.822 µN .

1+1 0 3+1 0 2+1 0 1+2 0
µ

Full Nmax = 12 0.838 1.866 0.960 0.336
12[6] SU(3) 0.840 1.866 1.015 0.337

rms
Full Nmax = 12 2.146 2.092 2.257 2.373
12[6] SU(3) 2.139 2.079 2.236 2.355

seen in Fig. 4. Also, as the B(E2) strengths almost doubles upon increasing the basis
space from Nmax = 6 to Nmax = 12 — a result that suggests that further expansion of
the basis space may be needed to reach the experimental value of 21.8(4.8) e2fm4, the
close correlation between the Nmax = 12 and 12[6] results is even more impressive.

5 Conclusion

We have developed a novel approach that capitalizes on advances being made in ab

initio methods while exploiting exact and partial symmetries of nuclear many-body
system. Using this approach we have demonstrated that the low-lying eigenstates of
6Li, 8Be, 12C, and 16O, which were obtained using the JISP16NN interaction, exhibit
a strong dominance of few intrinsic spin components and carry an intriguingly simple
pattern of dominant deformations. The results very clearly underscore the significance
of the SU(3) scheme, LS-coupling, and underlying symplectic symmetry in enabling
an extension, through symmetry-guided model space reductions, of ab initio methods
to heavier nuclei beyond 16O.
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Figure 4: Electric quadrupole transition probabilities (a) and quadrupole moments
(b) as a function of ~Ω for T=0 states of 6Li calculated in the full Nmax = 12 (solid
red line) and symmetry-truncated 12[6] (dashed black line) model spaces.
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