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Abstract

We report recent developments of the Monte Carlo Shell Model (MCSM)
and its application to the no-core calculations. It is shown that recent develop-
ments enable us to apply the MCSM to the shell-model calculations without a
core. Benchmarks between the MCSM and Full-Configuration Interaction (FCI)
methods demonstrate consistent results with each other within estimated uncer-
tainties. No-Core Full Configuration (NCFC) results are also presented as full
ab initio solutions extrapolated to the infinite basis limit.
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1 Introduction

One of the major challenges in nuclear physics is to understand nuclear structure
and reactions from ab initio calculations. Such calculations have recently become
feasible for nuclear many-body systems beyond A = 4 due to the rapid evolution of
computational technologies. Together with the Green’s Function Monte Carlo [1] and
Coupled Cluster theory [2], the No-Core Shell Model (NCSM) is one of the relevant
ab initio methods and has been emerging for about a decade. It is now available for
the study of nuclear structure and reactions in the p-shell nuclei [3].

As the NCSM treats all the nucleons democratically, computational demands for
the calculations explode exponentially as the number of nucleons increases. Current
computational resources limit the direct diagonalization of the Hamiltonian matrix
using the Lanczos algorithm to basis spaces with a dimension of around 1010. In
order to access heavier nuclei beyond the p-shell region with larger basis dimensions,
many efforts have been devoted to the NCSM calculations. One of these approaches
is the Importance-Truncated NCSM [4] where the model spaces are extended by
using an importance measure evaluated using perturbation theory. Another approach
is the Symmetry-Adapted NCSM [5] where the model spaces are truncated by the
selected symmetry groups. Similar to these attempts, the no-core Monte Carlo Shell
Model (MCSM) [6, 7, 8] is one of the promising candidates to go beyond the Full
Configuration Interaction (FCI) method which is a different truncation of the basis
states that commonly used in the NCSM.

In these proceedings, we focus on the latest application of the MCSM toward
the ab initio no-core calculations, which has become viable recently with the aid
of major developments in the MCSM algorithm [8, 9, 10] and also a remarkable
growth in the computational power of state-of-the-art supercomputers. The overview
of the benchmarks in the no-core MCSM is based on the results mostly presented in
Refs. [7, 8].
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2 MCSM

The MCSM has been developed mainly for conventional shell-model calculations with
an assumed inert core [11]. Recently the algorithm and code itself have been heavily
revised and rewritten so as to accommodate massively parallel computing environ-
ments [8, 9, 10]. In this section, we briefly overview the MCSM and introduce some
of recent developements.

2.1 Brief overview

The MCSM approach [11] proceeds through a sequence of diagonalization steps within
the Hilbert subspace spanned by the deformed Slater determinants in the HO single-
particle basis as the selected importance-truncated bases. A many-body basis state
|ΨJ

π
M 〉 is a linear combination of non-orthogonal angular-momentum (J) and par-

ity (π) projected deformed Slater determinants with good total angular momentum
projection (M) as a stochastically selected basis,

|ΨJ
π
M 〉 =

Nb∑

n=1

fn

J∑

K=−J

gnKP J

MKP π|φn〉, (1)

where the deformed Slater determinant is |φ〉 =
∏A

i=1 a
†
i
|−〉 with the vacuum |−〉

and the creation operator a†
i
=

∑Nsp

α=1 c
†
αDαi. Nsp is specified by the cutoff of the

single particle orbits, Nshell. One then stochastically samples the coefficient Dαi in all
possible many-body basis states around the mean field solutions through the auxiliary
fields and diagonalizes the Hamiltonian matrix within the subspace spanned by these
bases Nb. Stochastically sampled bases are accepted so as to minimize the energy
variationally. Therefore the MCSM can evade the so-called negative sign problem,
which is the fundamental issue that cannot be avoided in quantum Monte Carlo
methods. With increasing MCSM basis dimension, Nb, the ground state energy of a
MCSM calculation converges from above to the exact value. The energy, therefore,
always gives the variational upper bound in this framework.

An exploratory no-core MCSM investigation demonstrating a proof-of-the princi-
ple has been done for the low-lying states of the Berylium isotopes by applying the
existing MCSM algorithm with a core to a no-core problem [6]. Recent improvements
on the MCSM algorithm have enabled significantly larger calculations [8, 9, 10]. We
adopt these improvements in the present work [7, 8].

2.2 Recent developments

Among the recently achieved developments of our MCSM algorithm [8, 9, 10], in this
subsection, we focus on two improvements: (1) the efficient computation of the two-
body matrix elements (TBMEs) for the most time-consuming part in our calculations
[8, 9] and (2) the energy-variance extrapolation for our MCSM (approximated) results
to the FCI (exact) ones [8, 10]. There are other improvements such as the conjugate
gradient method in the process of the basis search and the re-ordering technique in
the energy variance extrapolations. Because of space limitations, we refer for the
details of these improvements to Refs. [8, 10].

2.2.1 Efficient computation of the TBMEs

One of the main issues in the shell-model calculations is to evaluate TBMEs efficiently.
As the matrix for the TBMEs is sparse in general, the indirect-index (list-vector)
method is usually adopted in the shell-model calculations by keeping the value of the
non-zero matrix elements and their indices. However, it tends to give slow perfor-
mance due to the irregular memory access patterns.
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Figure 1: Schematic illustraion of the (vector)t × (matrix) × (vector) operation.

Alternatively, in our recent MCSM code, we transform the sparse matrix to a block
matrix with dense blocks by utilizing the symmetries of the two-body interaction [9].
The one-body density-matrix elements ρll′ are grouped as ρ̃(∆m) according to ∆m ≡
jz(l

′)− jz(l) where l and l′ are the labels for the state. The TBMEs are also similarly
categorized. Then, the two-body part of the Hamiltonian overlap can be expressed
as schematically indicated in Fig. 1. Furthermore, most of the computational time is
devoted to the (matrix) × (vector) operation. It is usually repeated a number of times
for different ρ̃’s. By binding Nvec ρ̃-vectors into a matrix, repeated (matrix)×(vector)
operations are replaced by a (matrix)×(matrix) operation at once. As shown in Fig. 2,
we can achive 70−80 % of the peak performance with Nvec ∼ 30−100 in the test case
of the (matrix) × (matrix) operation [9].

2.2.2 Energy-variance extrapolation to the FCI results

With increasing Monte Carlo basis dimension Nb, the MCSM results converge to the
FCI results from above. In order to estimate the exact FCI answer, we extrapolate the
energy and other observables evaluated by MCSM wave functions using the energy

Figure 2: Comparison of the computational performance among the indirect-index
method (Ind.), matrix-vector method (M-V) and matrix-matrix method (M-M) with
different Nvec measured on the SPARC64 VII and Xeon X5570 systems. The values
are normalized by their theoretical peak performance. See Ref. [9] for the details.
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Figure 3: 4He ground-state energies as functions of number of basis states (left) and
energy variance (right). From the above to the bottom, the symbols (horizontal
dashed lines in the left figure and open symbols at the zero energy variance in the
right figure) are the MCSM (FCI) results in Nshell = 2, 3, 4 and 5, respectively. See
Ref. [7] for the details.

variance [8, 10]. That is, the MCSM results are plotted as a function of the evalu-

ated energy variance, ∆E2 = 〈Ψ|H2|Ψ〉 − (〈Ψ|H |Ψ〉)2, and then extrapolated to zero
variance.

As a typical example, the behavior of the ground-state energies of 4He (0+) with
respect to the number of basis states and to the energy variance are shown in Fig. 3.
From Fig. 3, one can see that the MCSM results can be extrapolated to the FCI ones
by using the quadratic fit function of E(∆E2) = E(∆E2 = 0) + c1∆E2 + c2(∆E2)

2

with the fitting parameters E(∆E2 = 0), c1, and c2.

3 Benchmarks

Augmented by the recent development of the MCSM algorithm [8, 9, 10], we have
performed benchmarks of the no-core MCSM calculations [7, 8]. The main outcome
of the initial benchmark project is summarized in Table 1. In Table 1, we illustrates
the comparisons of the energies for each state and model space between the MCSM
and FCI methods. The FCI gives the exact energies in the given model space while
the MCSM gives approximate energies. Thus the comparisons between them show
how well the MCSM works in no-core calculations. Furthermore, we also put the
No-Core Full Configuration (NCFC) [12] results for the states of 4 ≤ A ≤ 10 as the
fully converged energies in the infinite model space.

For this benchmark comparison, the JISP16 two-nucleon interaction [13] is adopted
and the Coulomb force is turned off. Isospin symmetry is assumed. The energies
are evaluated for the optimal harmonic oscillator frequencies where the calculated
energies are minimized for each state and model space. Here the contributions from
the spurious center-of-mass motion are ignored for simplicity.

The comparisons are made for the states; 4He (0+), 6He (0+), 6Li (1+),
7Li (1/2−, 3/2−), 8Be (0+), 10B (1+, 3+) and 12C (0+). The model space ranges
from Nshell = 2 to 5 for A ≤ 6 (4 for A ≥ 7). Note that the energies of 10B (1+, 3+)
and 12C (0+) in Nshell = 4 are available only from the MCSM results. The M -scheme
dimensions for these states are already close to or above the current limitation in the
FCI approach. The numbers of basis states are taken up to 100 in Nshell = 2−4 and
50 in Nshell = 5.

As seen in Table 1, the energies are consistent with each other where the FCI
results are available to within ∼ 100 keV (∼ 500 keV) at most of the MCSM re-
sults with(out) the energy-variance extrapolation of the MCSM results. The other
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Table 1: Energies in MeV calculated for seven ground states and two excited states
within the MCSM and FCI methods using the JISP16 NN interaction. The entries
of the MCSM indicate the MCSM results before the energy variance extrapolation,
while those of the “extrp” line denote the MCSM results after the extrapolations.
Uncertainties in extrapolated results are quoted in parenthesis. See Ref. [7] for the
details.

E (MeV)
Nuclei Method Nshell = 2 3 4 5 NCFC
4He MCSM -25.956 -27.914 -28.737 -29.011 -29.164(2)
(0+) extrp -28.738(1) -29.037(1)

FCI -25.956 -27.914 -28.738 -29.036
6He MCSM -13.343 -19.186 -23.480 -25.080 -29.51(5)
(0+) extrp -19.196(1) -23.687(4) -26.086(76)

FCI -13.343 -19.196 -23.684 -26.079
6Li MCSM -14.218 -21.549 -26.757 -28.410 -33.22(4)
(1+) extrp -21.581(1) -27.166(16) -29.873(83)

FCI -14.218 -21.581 -27.168 -29.893
7Li MCSM -14.459 -24.073 -30.904 -39.8(1)

(1/2−) extrp -24.167(2) -31.780(51)
FCI -14.458 -24.165 -31.748

7Li MCSM -17.232 -25.978 -32.494 -40.4(1)
(3/2−) extrp -26.061(4) -33.272(89)

FCI -17.232 -26.063 -33.202
8Be MCSM -28.435 -41.242 -50.222 -59.1(1)
(0+) extrp -41.293(1) -50.753(32)

FCI -28.435 -41.291 -50.756
10B MCSM -29.755 -41.965 -52.239 -68.5(1.5)
(1+) extrp -42.357(46) -54.89(16)

FCI -29.755 -42.338
10B MCSM -34.221 -46.263 -56.346 -69.8(2)
(3+) extrp -46.618(22) -58.41(13)

FCI -34.221 -46.602
12C MCSM -62.329 -76.413 -90.158
(0+) extrp -76.621(4) -91.957(43)

FCI -62.329 -76.621

observables besides the energies; the point-particle root-mean-square matter radii and
electromagnetic moments also give reasonable agreements between the MCSM and
FCI results. The detailed comparisons among the MCSM, FCI, and NCFC methods
are discussed in Ref. [7].

4 Summary

By exploiting the recent development in the efficient computation of the Hamilto-
nian matrix elements between non-orthogonal Slater determinants and the technique
of energy-variance extrapolation, the observables give good agreement between the
MCSM and FCI results in the p-shell nuclei. From the benchmark comparison, the
no-core MCSM is now verified in the application to the ab initio no-core calculations
for light nuclei. The application to heavier nuclei is expected in the near future.
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