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Abstract

The three-body continuum Coulomb problem is treated in terms of gener-

alized parabolic coordinates. Specifically, the original problem is reduced to a

driven equation where the ‘perturbation’ operator contains the non-orthogonal

part of the kinetic energy operator. As a test of this approach, a simple two-

dimensional model problem is solved numerically by using so-called parabolic

quasi-Sturmian basis representation. Convergence of the solution is achieved as

the basis set is enlarged.
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1 Introduction

The three-body continuum Coulomb problem is one of fundamental unresolved prob-
lems of theoretical physics. In atomic physics, a prototype example is a two-electron
continuum which arises as a final state in electron-impact ionization and double pho-
toionization of atomic systems. Several discrete-basis-set methods for calculations of
such processes have been developed recently including a convergent close coupling
(CCC) approach [1, 2], a Coulomb–Sturmian separable expansion method [3, 4] and
a J-matrix method [5, 6, 7]. In all these approaches (see also [8, 9]), the continuous
Hamiltonian spectrum is represented in the context of complete square integrable
bases. Despite an enormous progress made so far in discretization and subsequent
numerical solutions of three-body differential and integral equations of Coulomb scat-
tering theory, a number of related mathematical problems remain open. Actually,
the use of a product of two fixed charge Coulomb waves for two outgoing electrons as
an approximation to the three-body continuum state, is typical for these approaches.
As a consequence, a long-range potential appears in the kernel of the corresponding
Lippmann–Schwinger (LS) equation. Since this integral equation is, in principle, non-
compact, its formal solution therefore should be divergent. Note, however, that in the
two-body problem this type of definition of the “free particle solution” is not leading
to divergent solutions [10]. In addition, in the three-body case, approaches like the
exterior complex scaling [11] and generalized Sturmian approaches [8] lead to correct
solutions for the driven equation from which the LS equations are derived. One of
the aims of this paper is to understand the reason of these differences between the
solutions corresponding to the LS type and driven equations.

On the other hand, it is well known [12, 13] that the Schrödinger equation for
a three-body Coulomb system at large particle separations, i. e., in the so-called re-
gion Ω0, is separable in terms of generalized parabolic coordinates {ξj , ηj}, j = 1, 2, 3
[13, 14]. Moreover, a representation of the corresponding Green’s function operator
has been derived in Ref. [15]. Thus, at first glance, one can get an impression that
the three-body Coulomb problem can be recast as a Lippmann–Schwinger type equa-
tion, where the potential energy operator coinciding with the non-orthogonal part of
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the kinetic energy operator, is expressed in terms of second partial mixed derivatives
with respect to the parabolic coordinates. No complete studies of the compactness of
the kernel of this integral equation can be found in the literature (see discussion in
Ref. [16]). Actually, a differential operator of this type seems to be unbounded in the
Hilbert space, and therefore finding formal solutions of the corresponding Lippmann–
Schwinger equation could be difficult. To avoid these problems, an alternative ap-
proach can be used by considering an inhomogeneous Schrödinger equation with a
square integrable driven term. In this paper, we formulate a procedure for solving
the driven equation using so-called quasi-Sturmian (QS) functions. Unlike Sturmian
functions (see, e. g., Refs. [17, 18] and references therein) which are eigensolutions of a
Sturm–Liouville differential or integral equation and form a complete set of basis func-
tions, the QS functions are constructed from square-integrable basis functions with
the help of an appropriate Coulomb Green’s function operator. In order to test practi-
cally the QS approach and the solution of driven type instead of Lippmann–Schwinger
equations, we consider a simple two-dimensional model problem on the plane (ξ1, ξ3).
Here the total wave operator, aside from the one-dimensional Coulomb wave operators

ĥ1 and ĥ3, contains a ‘perturbation’ term ∂2

∂ξ1 ∂ξ3
.

This paper is organized as follows. We introduce notations, recall the generalized
parabolic coordinate definition and convert the three-body Coulomb problem into
a driven equation in Sec. 2. We present in Sec. 3 a simple two-dimensional model
and briefly outline the parabolic QS approach. Calculations of model continuum wave
function are also described in Sec. 3. Our aim is to study the rate of convergence as the
basis set used to describe the ‘perturbation’ operator is enlarged. The calculations
show that the convergence can be achieved on the basis of a reasonable size with
appropriately chosen basis parameters. Sec. 4 contains a brief discussion of the overall
results. Atomic units are used throughout.

2 Coulomb three-body system

in parabolic coordinates

2.1 General considerations

We consider three particles of masses m1, m2, m3, charges Z1, Z2, Z3 and momenta
k1, k2, k3. The Hamiltonian of the system after separating out the center-of-mass
motion is given by

Ĥ = −
1

2µ12
∆R −

1

2µ3
∆r +

Z1Z2

r12
+
Z2Z3

r23
+
Z1Z3

r13
, (1)

where rls denotes relative coordinates,

rls = rl − rs, rls = |rls|, (2)

R and r are Jacobi coordinates,

R = r1 − r2, r = r3 −
m1r1 +m2r2

m1 +m2
. (3)

The reduced masses are defined as

µ12 =
m1m2

m1 +m2
, µ3 =

m3 (m1 +m2)

m1 +m2 +m3
. (4)

In the Schrödinger equation

ĤΦ = EΦ, (5)
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the eigenenergy E > 0 is given by

E =
1

2µ12
K

2 +
1

2µ3
k
2, (6)

where K and k are the momenta conjugate to variables R and r. By substituting

Φ = ei(K·R+k·r)Ψ (7)

into Eq. (5), we obtain an equation for the reduced wave function Ψ:

[

−
1

2µ12
∆R −

1

2µ3
∆r −

i

µ12
K · ∇R −

i

µ3
k · ∇r +

Z1Z2

r12
+
Z2Z3

r23
+
Z1Z3

r13

]

Ψ = 0.

(8)
Leading-order asymptotic terms of Ψ in the Ω0 domain are expressed in terms of
generalized parabolic coordinates [13]:

ξ1 = r23 + k̂23 · r23, η1 = r23 − k̂23 · r23,

ξ2 = r13 + k̂13 · r13, η2 = r13 − k̂13 · r13,

ξ3 = r12 + k̂12 · r12, η3 = r12 − k̂12 · r12,

(9)

where kls = klms−ksml

ml+ms
is the relative momentum, k̂ls = kls

kls
and kls = |kls|. The

operator in square brackets in Eq. (8) denoted by D̂, can be decomposed into two
terms [13]:

D̂ = D̂0 + D̂1, (10)

where the operator D̂0 contains the leading term of kinetic energy and the total
potential energy:

D̂0 =
3
∑

j=1

1
µls(ξj+ηj)

[

ĥξj + ĥηj
+ 2klstls

]

for l < s and j 6= l, s,

(11)

ĥξj = −2

(

∂

∂ξj
ξj

∂

∂ξj
+ iklsξj

∂

∂ξj

)

, (12)

ĥηj
= −2

(

∂

∂ηj
ηj

∂

∂ηj
− iklsηj

∂

∂ηj

)

. (13)

Here tls =
ZlZsµls

kls
and µls =

mlms

ml+ms
. The operator D̂1 represents the remaining part

of kinetic energy [13] which, in the case of the (e−, e−, He++) = (123) system with
m3 = ∞, takes the form [19]:

D̂1 =

2
∑

j=1

(−1)j+1

[

u
−
j · u−

3

∂2

∂ξj ∂ξ3
+ u

−
j · u+

3

∂2

∂ξj ∂η3

+ u
+
j · u−

3

∂2

∂ηj ∂ξ3
+ u

+
j · u+

3

∂2

∂ηj ∂η3

]

, (14)

where

u
±
j = r̂ls ∓ k̂ls. (15)

The asymptotic behavior of Ψ is determined by the operator D̂0. In particular,
there exist solutions of the equation

D̂0ΨC3 = 0 (16)
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such that the total wave functions (7) satisfy Redmond conditions [20] in Ω0. These
solutions are well-known C3 wave functions. ΨC3 are expressed in terms of products
of three Coulomb waves. For example, ΨC3 with pure outgoing behavior is written as

ΨC3 =
3
∏

j=1

1F1(itls, 1; −iklsξj). (17)

In turn, D̂1 is regarded as a perturbation which does not violate asymptotic condi-
tions [13, 14].

2.2 Formal solution of the problem

At first glance, given the Green’s function operator Ĝ = D̂−1
0 (see Ref. [15]), one

could take into account the non-orthogonal term D̂1 of the kinetic energy operator
by putting it into the kernel of the Lippmann–Schwinger type equation:

Ψ = ΨC3 − ĜV̂Ψ,

V̂ ≡ D̂1.
(18)

If the kernel ĜV̂ is compact, the integral equation (18) can be solved by an algebraic
method based on the fact that a compact operator may be uniformly approximated
by operators of finite rank. For this purpose, e. g., a set of square-integrable parabolic
Laguerre basis functions [21]

|N〉 ≡ BN(ξ, η) =

3
∏

j=1

φnjmj
(ξj , ηj), (19)

φnjmj
(ξj , ηj) = ψnj

(ξj) ψmj
(ηj), (20)

ψn(x) =
√

2bj e
−bjxLn(2bjx), (21)

could be used. The index N represents all indexes of the basis function, N

= {n1,m1, n2,m2, n3,m3}, and the argument (ξ, η) of the functionBN(ξ, η) represents
in compact form the dependence on all parabolic coordinates. The basis functions
(20), (21) are parametrized by different Coulomb–Sturmian parameters bj for each

pair of {ξj , ηj}, j = 1, 3. Thus, the operator V̂ is represented by its projection V̂N

onto a subspace of basis functions,

V̂N =

N0
∑

N,N′=0

|N〉〈N|V̂ |N′〉〈N′|, (22)

and the solution Ψ of the problem is obtained for V̂N . Substituting V̂ by V̂N in
Eq. (18) we obtain a finite matrix equation for the expansion coefficients [a]

N
= 〈N|Ψ〉,

a = a(0) − G V a, (23)

which has a solution
a = (1 + G V)

−1
a(0). (24)

Here [G]
NN′

= 〈N| Ĝ |N′〉 and [V]
NN′ = 〈N| V̂ |N′〉 are the Green’s function operator

and potential operator matrices of the rank of N0+1, and a(0) is the coefficient vector
of ΨC3, i. e.,

[

a(0)
]

N
= 〈N|ΨC3 〉. The wave function Ψ is expressed in terms of the

solution (24):

Ψ = ΨC3 −

N0
∑

N=0

[C]
N
Ĝ |N〉, (25)
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where C = V a.
We performed various studies of Eq. (18) and found out that its kernel is not

compact when expressed in terms of L2 spaces. Actually, the problem is that any
L2 basis does not possess the appropriate asymptotic behavior. Thus the correct
asymptotic behavior is to be implemented and then the perturbation operator D̂1

[see Eq. (14)] seems to be not bounded. However, if the basis possess already the
asymptotic behavior of the problem, D̂1 turns out to be a short range operator and
becomes compact and manageable.

We explore an alternative approach to the problem based on a study of the driven
equation

[

D̂0 + D̂1

]

Ψsc = −D̂1ΨC3, (26)

where the wave function Ψ is splitted into outgoing (ingoing) ΨC3 and scattered Ψsc

parts,

Ψ = Ψsc +ΨC3. (27)

Note, the inhomogeneity in Eq. (26) is a square-integrable function. Equation (25)
gives a hint on how to construct a solution Ψsc of Eq. (26) with the help of the square-
integrable basis (19). Namely, we suppose that the wave function Ψ can be expressed
in the form (25), i. e., we propose to expand Ψsc as

Ψsc =
∑

N=0

[c]
N
|QN〉, (28)

where

|QN〉 ≡ Ĝ |N〉. (29)

We call the function |QN〉 a quasi-Sturmian function. The word ‘quasi’ refers to that
there is no need to solve a Sturm–Liouville equation to obtain these functions.

According to the definition (29), the QS functions satisfy a driven equation

D̂0 QN(ξ, η) = BN(ξ, η) (30)

and possess the same asymptotic behavior as the kernelG(E; ξ, η, ξ′, η′) at large values
of ξ, η and finite ξ′, η′. We are using here the Laguerre basis functions BN(ξ, η),
though any basis sets can be used. However, to preserve the asymptotic behavior
of Q functions, the extension on the configuration state of basis functions has to be
finite. A representation of the kernel G(E; ξ, η, ξ′, η′) in the basis (19) was given in
Ref. [22] and this allows for a closed form expression for QS functions. The right-
hand-side of Eq. (30) depends on indexes N, thus for each set of values N we have a
particular function QN. These functions form a complete basis even though they are
not orthogonal.

By solving Eq. (26) with the proposition (28) we enforce the solution (27) to
possess the correct outgoing asymptotic behavior of scattering function. This is sim-
ilar to what is observed when generalized Sturmian functions are used [8, 9]. The
completeness of the QN basis, the short range of both the right-hand-side of Eq. (26)
and D1QN assure convergence of the expansion. To exemplify this affirmation, we
solve in the next section a two-dimensional model problem presented in Ref. [19]. We
use a product of QS functions obtained from one-dimensional Green’s function:

Qn(k, ξ) ≡

∫

dξ′G(+)(k; ξ, ξ′) ψn(ξ
′). (31)

This allows us to probe the convergence of expansion of two-dimensional scattering
wave function before considering a very elaborate and cumbersome six-dimensional
case as required for the full three-body problem.
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3 A model problem

3.1 Statement of the problem

A model double continuum electron wave function was presented in 1997 in Ref. [19].
The model used a two-variable hypergeometric function Φ2 to represent two electrons
interacting with a heavy charged nucleus and with each other. An approximate two-
electron Schrödinger equation was also numerically solved in Ref. [19]. This equation
was associated with very particular kinematic conditions. The model equation is

[

ĥ1(k1) + ĥ3(k3)− 8
k3

k1

∂2

∂ξ1∂ξ3

]

Ψ(ξ1, ξ3) = 0, (32)

where a one-dimensional Coulomb wave operator ĥ is defined as

ĥ(k) =
1

µξ

[

−2
∂

∂ξ
ξ
∂

∂ξ
− 2ikξ

∂

∂ξ
+ 2kt

]

, kt = µZ. (33)

We use this model as a starting point of our QS test in this work. This allows us to
deal with an equation which contains most of the difficulties of the full three-body
problem like a non-separability and scattering type asymptotics of solutions.

We start with splitting the wave function Ψ into two parts,

Ψ = Ψsc +ΨC2, (34)

where

ΨC2(ξ1, ξ3) = 1F1

(

i
µ1Z1

k1
, 1, −ik1ξ1

)

1F1

(

i
µ3Z3

k3
, 1, −ik3ξ3

)

. (35)

This transforms Eq. (32) into a driven equation
[

ĥ1(k1) + ĥ3(k3)− 8
k3

k1

∂2

∂ξ1∂ξ3

]

Ψsc(ξ1, ξ3) = 8
k3

k1

∂2

∂ξ1∂ξ3
ΨC2(ξ1, ξ3). (36)

The scattering function Ψsc is assumed to have a purely outgoing behavior and can
be expressed as a finite series in terms of products of QS functions (31):

Ψsc(ξ1, ξ3) =

N−1
∑

n1,n3=0

cn1n3
Qn1

(p1, ξ1)Qn3
(p3, ξ3). (37)

Note, pj is not necessary equal kj . The one-dimensional Green’s function G(+) satisfies
the equation

ĥ(k)G(+)(k; ξ, ξ′) = δ(ξ − ξ′). (38)

A detailed description of QS functions (31) will be presented soon elsewhere.
Due to an obvious relation

ĥ(k) = ĥ(p)−
2i

µ
(k − p)

∂

∂ξ
, (39)

we obtain the following system of linear equations for the unknown coefficients cn1n3

after substituting Ψsc(ξ1, ξ3) in Eq. (36) by its expansion (37) and projecting onto
ψm1

(ξ1)ψm3
(ξ3):

N−1
∑

n1,n3=0

{

δm1n1
G(3)(+)

m3n3
(p3) +G(1)(+)

m1n1
(p1) δm3n3

−

[

2i

µ1
(k1 − p1)C

(1)
m1n1

(p1)G
(3)(+)
m3n3

(p3)

+G(1)(+)
m1n1

(p1)
2i

µ3
(k3 − p3)C

(3)
m3n3

(p3) + 8
k3

k1
C(1)

m1n1
(p1)C

(3)
m3n3

(p3)

]}

cn1n3

= 8
k3

k1
d(1)m1

d(3)m3
, (40)
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where 0 ≤ m1,m3 ≤ N − 1, and C
(j)
m,n and d

(j)
m are respectively the coefficients of

expansion in basis functions ψm of derivatives of QS functions (31) and of derivatives
of confluent hypergeometric functions which arise in Eq. (36) due to Eqs. (37) and (35).

3.2 Results

We follow Ref. [19] and set Z1 = −2, µ1 = 1, k1 = 1, and Z3 = 1, µ3 = 1
2 , k3 = 0.4.

The convergence is intuitively expected if the sum of the first two (‘unperturbed’)
terms in figure brackets in l.h.s. of Eq. (40) is much larger than the (‘perturbation’)
term in square brackets. We hope to affect the ratio of these two contributions to the
matrix elements by varying the values of basis parameters pj .

Our calculations demonstrate that the convergence rate and numerical stability
may be significantly improved by taking appropriate values of p1 and p2. The results
obtained with parameters p1 = 1 and p3 = 0.1 (the Laguerre scale factors bj = pj)
are shown in Figs. 1–6 where we plot real and imaginary parts of the scattering wave
function Ψsc on the diagonal ξ1 = ξ3 and on the axes ξ1 and ξ3. The convergence is
seen from the figures to be achieved; i. e., the proposed approach is reliable.

4 Conclusions

We presented in this contribution a study of three-body scattering problem expressed
in parabolic coordinates. As is well-known, the C3 wave function [14] possesses a
correct asymptotic behavior in the Ω0 region where all particles are far from each
other. This is a good starting point for formulating a Lippmann–Schwinger equation
or driven type equations. This means that if we consider the C3 function as an asymp-
totic solution, the scattering part (the remaining part of the solution) should satisfy
an equation having a compact kernel or a short range driven term. Due to proper-
ties of perturbation corresponding to the C3 function [23], the use of standard L2

bases is not appropriated. Instead it is necessary to use basis functions possessing the
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Figure 1: Convergence of the real part of solution vs the number N of basis quasi-
Sturmians used in calculation on the diagonal ξ1 = ξ3.
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Figure 2: Same as Fig. 1 but for the imaginary part of solution.
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Figure 3: Same as Fig. 1 but on the axis ξ1.

asymptotic behavior corresponding to the problem under consideration. Therefore we
introduce a set of basis functions that we name quasi-Sturmian functions. They are
defined as solutions of a driven differential equation which includes the separable part
of the full three-body kinetic energy in generalized parabolic coordinates and also all
Coulomb interactions. Any basis set can be used in the right-hand-side of Eq. (30).
The choice of a convenient basis depends on the type of the driven term appearing
in the full three-body driven equation. The basis in the right-hand-side of Eq. (30)
should provide a fast convergence of the driven term. On the other hand, the QS
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Figure 4: Same as Fig. 2 but on the axis ξ1.
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Figure 5: Same as Fig. 1 but on the axis ξ3.

functions also form a basis set thus allowing to expand the scattering wave function
we are looking for. All QS functions possess the correct asymptotic behavior of the
full three-body problem. This means, in principle, that only the inner region where
the interaction between all particles takes place, should be expanded.

We demonstrate an efficiency of the proposed method in this contribution by
applying it to a two-dimensional problem which possesses most of the full problem
difficulties: the non-separability and the scattering type boundary conditions. We
probe whether we are able to achieve the convergence of the scattering wave function
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Figure 6: Same as Fig. 2 but on the axis ξ3.

by the use of QS functions. A more extensive study of properties of QS functions
associated with a different type of basis used to expand the driven term, will be
presented soon elsewhere. In this study we shall present a six-dimensional function
possessing both incoming and outgoing type boundary conditions.
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