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Abstract

I abstract from a recent publication [1] the motivations for, analysis in and
conclusions of a study of the ultraviolet and infrared momentum regulators in-
duced by the necessary truncation of the model spaces formed by a variational
trial wave function. This trial function is built systematically from a complete
set of many-body basis states based upon three-dimensional harmonic oscillator
(HO) functions. Each model space is defined by a truncation of the expansion
characterized by a counting number (N ) and by the intrinsic scale (~ω) of the
HO basis. Extending both the uv cutoff to infinity and the ir cutoff to zero is
prescribed for a converged calculation. In [1] we established practical procedures
which utilize these regulators to obtain the extrapolated result from sequences
of calculations with model spaces. Finally, I update this subject by mentioning
recent work on our extrapolation prescriptions which have appeared since the
submission of [1]. The numerical example chosen for this contribution consists
of calculations of the ground state energy of the triton with the “bare” and
“soft” Idaho N3LO nucleon-nucleon (NN) interaction.

Keywords: No-core shell model; convergence of expansion in harmonic oscil-

lator functions; ultraviolet regulator; infrared regulator

1 Introduction

The advent of giant nuclear shell-model codes based upon the three-dimensional har-
monic oscillator (HO) in the 1970s coincided with the advent of a program to use
the HO eigenfunctions as a basis of a finite linear expansion to make a straightfor-
ward variational calculation of the properties of light nuclei [2]. At the same time
theorems based upon functional analysis established the asymptotic convergence rate
of these latter calculations as a function of the counting number (call it N ) which
characterizes the size of the expansion basis (or model space) [3, 4]. The conver-
gence rates of these theorems (inverse power laws in N for “non smooth” potentials
with strong short range correlations and exponential in N for “smooth” potentials
such as gaussians) were demonstrated numerically in [3] for the HO expansion and in
[5] for the parallel expansion in hyperspherical harmonics. These convergence theo-
rems seem to be known in the hyperspherical harmonic community and are effectively
demonstrated in the calculation of the properties of few-nucleon systems “from first
principles”; that is, solving the many-body Schrödinger equation with a Hamiltonian
containing nucleon-nucleon interactions fitted to scattering data and to properties of
the deuteron. The convergence rates of variational calculations using the HO basis
have been periodically rediscovered empirically by those who, in the present day, have
adapted “giant shell-model codes” or written new codes to perform “ab initio” “no-
core shell model” (NCSM) calculations of s- and p-shell nuclei. I have never seen a
reference to the functional analysis theorems regarding these convergence rates in the
NCSM papers. However, the HO expansion basis has an intrinsic scale parameter ~ω
which does not naturally fit into an extrapolation scheme based upon N as discussed
by [3, 4, 6]. Indeed the model spaces of these NCSM approaches are characterized
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by the ordered pair (N , ~ω). Here the basis truncation parameter N and the HO
energy parameter ~ω are variational parameters [7, 8, 9]. It is the purpose of this
contribution to summarize the properties of another ordered pair which perhaps more
physically describes the nature of the model spaces and provides extrapolation tools
which use N and ~ω on an equal footing [1]. This is the pair of ultraviolet (uv) and
infrared (ir) cutoffs (each a function of both N and ~ω) induced by the truncation.
They were first introduced to the NCSM in [10] in the context of an effective field
theory (EFT) approach (for a recent review of this program see [11]). These cutoffs
or regulators can usefully be employed in novel extrapolation schemes [1] which are
a natural outgrowth of those introduced in the 1970s, rediscovered by the NCSM
community, and in current use.

The variational approach alluded to above generates a trial wave function in a
completely systematic manner without regard for the details of the Hamiltonian under
consideration other than the implementation of exact symmetries. The goal, then,
is to define a complete set of states for a few-body system and to construct and
diagonalize the Hamiltonian matrix in a truncated basis of these states. The result
of the diagonalization is an upper bound to the exact eigenvalue of the complete
set. With this method a reliable estimate of the accuracy attained can be made
with the variational upper bound [3] provided that the trial function is constructed
using the terms of a systematic expansion set and convergence of the diagonalization
result (such as a ground-state energy) is observed as the basis is increased. The
algebra appropriate to generating and using trial wave functions, based on three
dimensional HO eigenfunctions, has been given by Moshinsky [2] and others [12]. The
trial functions take the form of a finite linear expansion in a set of known functions

ΨT =
∑

ν

a(N )
ν hν ,

where a
(N )
ν are the parameters to be varied and hν are many-body states based on

a summation over products of HO functions. The advantage of a HO basis is that
it is relatively straightforward to construct a complete set of few-body functions of
appropriate angular momentum and symmetry; examples are given in [12, 13]. The
trial function must have a definite symmetry reflecting the composition of the bound
state: fermions or bosons. This trial function ΨT must be quadratically integrable and
the expectation value of the Hamiltonian must be finite. The expansion coefficients
(known as generalized Fourier coefficients in the mathematical literature) depend
on the upper limit (such as an N defined in terms of total oscillator quanta) and
are obtained by minimizing the expectation value of the Hamiltonian in this basis.

Treating the coefficients a
(N )
ν as variational parameters in the Rayleigh quotient [14],

one performs the variation by diagonalizing the many-body Hamiltonian in this basis.
This is an eigenvalue problem so the minimum with respect to the vector of expansion
coefficients always exists and one obtains a bound on the lowest eigenvalue (and indeed
on the higher eigenvalues representing the excited states [15]). The basis functions
can also depend upon a parameter (such as the harmonic oscillator energy ~ω which
sets a scale) that then becomes a non-linear variational parameter additional to the
linear expansion coefficients.

One can view a shell-model calculation as a variational calculation, and thus ex-
panding the configuration space merely serves to improve the trial wave function [16].
The traditional shell-model calculation involves trial variational wave functions which
are linear combinations of Slater determinants. Each Slater determinant corresponds
to a configuration of A fermions distributed over A single-particle states. If we take
any complete set of orthonormal single-particle wave functions and consider all pos-
sible A-particle Slater determinants that can be formed from them, then these wave
functions form a complete orthonormal set of wave functions spanning the A-particle
Hilbert space. The Slater determinant basis of HO single-particle wave function is
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often defined in the “m-scheme”. That is, the single-particle states are labelled by
the quantum numbers n, l, j, and mj , where n and l are the radial and orbital HO
quantum numbers, j is the total single-particle spin, and mj its projection along the
z-axis. The many-body basis states have well-defined total spin projection, which
is simply the sum of mj of the single-particle states Mj =

∑

mj , hence the name
“m-scheme”. The many-body basis states are limited only by the imposed symme-
tries — parity, charge and total angular momentum projection (M), as well as by N .
However, in general the many-body basis states do not have a well defined total J .
This scheme is simple to implement and in two calculations (for positive and negative
parity) one gets the complete low-lying spectrum, including the ground state, even
though the spins of the low-lying states are not specified in the trial wave function.
The truncation by N results in finite matrices to be diagonalized, but they are much
larger than the matrices of the Moshinsky program which expects the properties of the
trial wave function (JT basis in shell model language) to be known. However, because
these shell model wave functions do span the space, an expansion in such “m-scheme”
Slater determinants is, in principle, also capable of giving an exact representation of
the eigenfunctions of the Hamiltonian.

These early ab initio calculations, both of the “no-core” shell model in which all
nucleons are active [16] and of the Moshinsky program [17, 18] attempted to overcome
the challenges posed by “non-smooth” two-body potentials by including Jastrow type
two-body correlations in the trial wave function. Nowadays, the NN potentials are
tamed by unitary transformations within the model space [19] or in free space by
the similarity renormalization group evolution [20]. In both cases, this procedure
generates effective many-body interations in the new Hamiltonian. Neglecting these
destroys the variational aspect of the calculation (and the physics contained in the
calculation, of course). We retain the variational nature of our NCSM investigation
by choosing a realistic smooth nucleon-nucleon interaction Idaho N3LO [21] which has
been used previously without renormalization for light nuclei(A ≤ 6) [7]. This poten-
tial is inspired by chiral perturbation theory and fits the two body data quite well. It
is composed of contact terms and irreducible pion-exchange expressions multiplied by
a regulator function designed to smoothly cut off high-momentum components in ac-
cordance with the low-momentum expansion idea of chiral perturbation theory. The
version we use has the high-momentum cutoff of the regulator set at 500 MeV/c. The
Idaho N3LO potential is a rather soft one, with heavily reduced high-momentum com-
ponents as compared to earlier realistic NN potentials with a strongly repulsive core.
Alternatively, in coordinate space, the Yukawa singularity at the origin is regulated
away so that this potential would be considered “smooth” by Delves and Schneider
and the convergence in N would be expected to be exponential [3, 4]. Even without
the construction of an effective interaction, convergence with the Idaho N3LO NN
potential is exponential in N , as numerous studies have shown [7, 20].

With the HO basis in the nuclear structure problem, convergence has been dis-
cussed, in practice, with an emphasis on obtaining those parameters which appear
linearly in the trial function (i. e. convergence with N ). Sometimes for each N the
non-linear parameter ~ω is varied to obtain the minimal energy [7, 22] for a fixed N
and then the convergence with N is examined. Sometimes ~ω is simply fixed at a
value which gives the fastest convergence in N [13]. Other extrapolation schemes have
been proposed and used [8]. In all of these schemes, in my opinion, the extrapolation
to an infinite basis is effected with the main role played by N and a secondary role
played by ~ω. The scheme proposed in [1] gives N and ~ω equal roles by employing
uv and ir cutoffs which which must be taken to infinity and to zero, respectively to
achieve a converged result (see Fig. 1).

In section 2 we briefly describe expansion schemes in HO functions. None of the
discussion in section 2 is new, but it paves the way for section 3 in which we suggest
a convergence analysis based upon the uv and ir cutoffs induced by the truncation
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Figure 1: (Color online) Schematic view of a finite model space (limited by the basis
truncation parameter N as described in the text), in which the uv and ir momentum
cutoffs are arbitrary. To reach the full many-body Hilbert space, symbolized by the
complete oval, one needs to let the uv cutoff → ∞ and the ir cutoff → 0.

of the model space. Section 4 is devoted to a sampling of tests and examples of this
new convergence scheme; for a more extensive discussion with more examples please
see Ref. [1].

2 Expansion in a finite basis of harmonic oscillator

functions

We briefly indicate the workings of the finite HO basis calculations performed and re-
fer the reader to a comprehensive review article [9] on the no-core shell model (NCSM)
for further details and references to the literature. A HO basis allows preservation of
translational invariance of the nuclear self-bound system. Translational invariance is
automatic if the radial HO wave function depends on relative, or Jacobi, coordinates
as was done in Refs. [13, 17, 18, 22]. Antisymmetrization (or symmetrization for the
α particle models of [17, 18]) of the basis is necessary and described in Refs. [9] and
[23]. Antisymmetrization in a Jacobi basis becomes analytically and computationally
forbidding as the number of nucleons increases beyond four or five. For this rea-
son these calculations are alternatively made with antisymmetrized wave functions
constructed as Slater determinants of single-nucleon wave functions depending on
single-nucleon coordinates. This choice loses translational invariance since, in effect,
one has defined a point in space from which all single-particle coordinates are defined.
Translational invariance is restored by choosing a particular truncation of the basis:
a maximum of the sum of all HO excitations, i. e.

∑A
i=1(2ni + li) ≤ Ntotmax, where

ni, li are the HO quantum numbers corresponding to the harmonic oscillators associ-
ated with the single-nucleon coordinates and Ntotmax is an example of the generic N
of the Introduction. The gain of this choice is that one can use technology developed
and/or adapted for NCSM, such as the shell model code ANTOINE [24], the parallel-
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processor codes “Many-Fermion Dynamics — nuclear” (MFDn) [25] and the No-Core
Shell Model Slater Determinant Code [26]. These codes set up the many-body basis
space, evaluate the many-body Hamiltonian matrix, obtain the low-lying eigenvalues
and eigenvectors using the Lanczos algorithm, and evaluate a suite of expectation
values using the eigenvectors.

The eigenstates factorize as products of a wave function depending on relative
coordinates and a wave function depending on the c. m. coordinates. The precise
method of achieving the factorization of the c. m. and intrinsic components of the
many-body wave function follows a standard approach, sometimes referred to as the
“Lawson method” [27]. In this method, one selects the many-body basis space in the
manner described above with N = Ntotmax and adds a Lagrange multiplier term to
the many-body Hamiltonian β(Hc.m. − 3

2~ω) where Hc.m. is the HO Hamiltonian for
the c. m. motion. With β chosen positive (10 is a typical value), one separates the
states of lowest c.m. motion (0S 1

2

) from the states with excited c. m. motion by
a scale of order β~ω. The resulting low-lying states have wave functions that then
have the desired factorized form. We checked, for the two cases A = 3 and A = 4,
that the codes manyeff [23] which use Jacobi coordinates and No-Core Shell Model
Slater Determinant Code [26] based upon single-nucleon coordinates gave the same
eigenvalues for the same values of N = Ntotmax and ~ω, indicating that the Lawson
method is satisfactory for the calculations in single-particle coordinates.

Now we return to the truncation parameter N of the HO basis expansion of the
many-body system. Usually, instead of truncating the sum of all HO excitations
N = Ntotmax, one uses the the more familiar truncation parameter Nmax. Nmax is
the maximum number of oscillator quanta shared by all nucleons above the lowest
HO configuration for the chosen nucleus. One unit of oscillator quanta is one unit of
the quantity (2n+ l) where n is the principle quantum number and l is the angular
quantum number. For A = 3, 4 systems Nmax = Ntotmax. For the p-shell nuclei they
differ, e. g. for 6Li, Nmax = Ntotmax−2, and for 12C,Nmax = Ntotmax−8. Later on we
will want a truncation parameter which refers, not to the many-body system, but to
the properties of the HO single-particle states. If the highest HO single-particle state
of this lowest HO configuration has N0 HO quanta, then Nmax + N0 = N identifies
the highest HO single-particle states that can be occupied within this many-body
basis. Since Nmax is the maximum of the total HO quanta above the minimal HO
configuration, we can have at most one nucleon in such a highest HO single-particle
state with N quanta. Note that Nmax characterizes the many-body basis space,
whereas N is a label of the corresponding single particle space. Let us illustrate this
distinction with two examples. 6He is an open shell nucleus with N0 = 1 since the
valence neutron occupies the 0p shell in the lowest many-body configuration. Thus
if Nmax = 4 the single particle truncation N is 5. On the other hand, the highest
occupied orbital of the closed shell nucleus 4He has N0 = 0 so that N = Nmax.

3 Ultraviolet and infrared cutoffs induced by basis

truncation

We begin by thinking of the finite single-particle basis space defined by N and ~ω
as a model space characterized by two momenta associated with the basis functions
themselves. In the HO basis, we follow [10] and define Λ =

√

mN (N + 3/2)~ω as
the momentum (in units of MeV/c) associated with the energy of the highest HO
level. The nucleon mass is mN = 938.92 MeV. To arrive at this definition one applies
the virial theorem to this highest HO level to establish kinetic energy as one half the
total energy (i. e., (N + 3/2)~ω ) and solves the non-relativistic dispersion relation
for Λ. This sets one of the two cutoffs for the model space of a calculation. En-
ergy, momentum and length scales are related, according to Heisenberg’s uncertainty
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principle. The higher the energy or momentum scale we may reach, the lower the
length scale we may probe. Thus, the usual definition of an ultraviolet cutoff Λ in
the continuum has been extended to discrete HO states. It is then quite natural to
interpret the behavior of the variational energy of the system with addition of more
basis states as the behavior of this observable with the variation of the ultraviolet
cutoff Λ. Above a certain value of Λ one expects this running of the observable with
Λ to “start to behave” so that this behavior can be used to extrapolate to the exact
answer. However, the truncation of the model space by N implies a second cutoff,
absent in free space; an infrared cutoff. Because the energy levels of a particle in a HO
potential are quantized in units of ~ω, the minimum allowed momentum difference
between single-particle orbitals is λ =

√
mN~ω and that has been taken to be an

infrared cutoff [10]. That is, there is a low-momentum cutoff λ = ~/b corresponding

to the minimal accessible non-zero momentum (here b =
√

~

mNω plays the role of a

characteristic length of the HO potential and basis functions). Note however that
there is no external confining HO potential in place. Instead the only ~ω dependence
is due to the scale parameter of the underlying HO basis. In [10] the influence of the
infrared cutoff is removed by extrapolating to the continuum limit, where ~ω → 0
with N → ∞ so that Λ is fixed. Clearly, one cannot achieve both the ultraviolet limit
and the infrared limit by taking ~ω to zero in a fixed-Nmodel space as this procedure
takes the ultraviolet cutoff to zero.

The calculated energies of a many-body system in the truncated model space will
differ from those calculated as the basis size increases without limit (N → ∞). This
is because the system is in effect confined within a finite (coordinate space) volume
characterized by the finite value of b intrinsic to the HO basis. The “walls” of the
volume confining the interacting system spread apart and the volume increases to the
infinite limit as λ → 0 and b → ∞ with Λ held fixed. Thus it is as necessary to
extrapolate the low momentum results obtained with a truncated basis with a given b
or ~ω as it is to ensure that the ultraviolet cutoff is high enough for a converged result.
These energy level shifts in a large enclosure have long been studied [28]; most recently
with the explicit EFT calculation of a triton in a cubic box allowing the edge lengths
to become large (and the associated ir cutoff due to momentum quantization in the
box going towards zero) [29]. There it was shown that as long as the infrared cutoff
was small compared to the ultraviolet momentum cutoff appearing in the “pionless”
EFT, the ultraviolet behavior of the triton amplitudes was unaffected by the finite
volume. More importantly, from our point of view of desiring extrapolation guidance,
this result means that calculations in a finite volume can confidently be applied to the
infinite volume (or complete model space) limit. Similar conclusions can be drawn
from the ongoing studies of systems of two and three nucleons trapped in a HO
potential with interactions from pionless EFT combined with this definition of the
infrared cutoff (λ =

√
mN~ω); see the review [11].

Other studies define the ir cutoff as the infrared momentum which corresponds
to the maximal radial extent needed to encompass the many-body system we are
attempting to describe by the finite basis space (or model space). These studies find
it natural to define the ir cutoff by λsc =

√

(mN~ω)/(N + 3/2) [20, 30]. Note that λsc

is the inverse of the root-mean-square (rms) radius of the highest single-particle state
in the basis; 〈r2〉1/2 = b

√

N + 3/2. We distinguish the two definitions by denoting
the first (historically) definition by λ and the second definition by λsc because of its
scaling properties demonstrated in the next Section.

The extension in [10] of the continuum ultraviolet cutoff to the discrete (and trun-
cated) HO basis with the definition Λ =

√

mN (N + 3/2)~ω seems unexceptional.
But, as always when one confidently makes such a statement, there are exceptions.
For example, an effective momentum for a HO state can be defined by the asymptotic
relation for large n between the radial part Rnl(r)/r of the harmonic oscillator func-
tions and the spherical Bessel functions jl(kr) of radial part of the 3D plane wave [31].
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Kallio showed that this relation is very accurate at small r for all n values [32]. The
alternate definition, suggested by Vary [33], identifies a uv regulator with the “Kallio
momentum” defined by this relation so that Λalternate =

√
2Λ. This is a scale change

only as is the definition by fiat in [34] which arrives at the same
√
2 factor for their

Λ. The more important distinction is the alternate definitions of the ir cutoff which
have different functional forms. It is clear that increasing Λ by increasing ~ω in a
fixed-N model space is not sufficient; doing so increases both of the putative infrared
cutoffs as well because Λ = λ

√

N + 3/2 = λsc(N + 3/2) and one continues to effec-
tively calculate in an effective confining volume which is getting smaller rather than
larger. This confining volume is certainly removed by letting N → ∞, at fixed ~ω,
because HO functions form a basis of the complete space. In addition, taking N → ∞
simultaneously removes the uv cutoff defined by Λ and the ir cutoff defined either by
λ or λsc. But increasing N without limit is computationally prohibitive. Thus there
is a practical issue to address: whether one must take the ir cutoff to zero by taking
~ω → 0 at fixed Λ (λir ≡ λ definition) or whether it is sufficient to allow ~ω be some
larger value, perhaps near that used in traditional shell-model calculations, and let
an increasing N take λir to small values, as it does with the definition λir ≡ λsc.

4 A study of uv and ir cutoffs in the triton

We display in a series of figures the running of the ground-state eigenvalue of a single
nucleus, 3H, on the truncated HO basis by holding one cutoff of (Λ, λir) fixed and
letting the other vary. These 3H calculations were made for N ≤ 36 and values of ~ω
as appropriate for the chosen cutoff value. For N ≥ 16, we used the code manyeff

[23] which uses Jacobi coordinates and the No-Core Shell Model Slater Determinant
Code [26] which use single-particle coordinates for smaller N . We checked that the
codes gave the same eigenvalues for overlapping values of N , indicating that the
Lawson method satisfactorily restores translational invariance to ground-state energy
calculations in single-particle coordinates.

In Fig. 2 and the following figures, |∆E/E| is defined as |(E(Λ, λir)−E)/E| where
E reflects a consensus ground-state energy from benchmark calculations with this NN
potential, this nucleus, and different few-body methods. The accepted value for the
ground state of 3H with this potential is −7.855 MeV from a 34 channel Faddeev
calculation [21], −7.854 MeV from a hyperspherical harmonics expansion [35], and
−7.85(1) from a NCSM calculation [7].

For the choice of Fig. 2, λir ≡ λ =
√
mN~ω, |∆E/E| decreases exponentially at

fixed λ, as Λ increases for the values of Λ achieved in this study. Fixed ~ω implies N
alone increases to drive Λ → ∞, λsc → 0 simultaneously. The linear fit on a semi-log
plot is extracted from the data. For fixed Λ, a smaller λ implies a smaller |∆E/E|
since more of the infrared region is included in the calculation.

In Fig. 3 we hold fixed the uv cutoff of (Λ, λir) to display the running of |∆E/E|
upon the suggested ir cutoff λ. For fixed λ, a larger Λ implies a smaller |∆E/E| since
more of the uv region is included in the calculation. But we immediately see a quali-
tative change in the curves between the transition Λ = 700 MeV and Λ = 800 MeV;
for smaller Λ, |∆E/E| does not go to zero as the ir cutoff is lowered and more of the
infrared region is included in the calculation. This behavior suggests that |∆E/E|
does not go to zero unless Λ ≥ ΛNN , where ΛNN is some uv regulator scale of the
NN interaction itself. From this figure one estimates ΛNN ∼ 800 MeV/c for the
Idaho N3LO interaction.

Yet the description of this interaction in the literature says that the version we use
has the high-momentum cutoff of the regulator set at ΛN3LO = 500 MeV/c [21]. This
does not mean that the interaction has a sharp cutoff at exactly 500 MeV/c, since
the terms in the Idaho N3LO interaction are actually regulated by an exponentially
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E
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Λ (MeV/c)

Figure 2: Dependence of the ground-state energy of 3H (compared to a converged
value; see text) upon the uv momentum cutoff Λ =

√

mN (N + 3/2)~ω for different
fixed λ =

√
mN~ω. The curves are a fit to the calculated points.

|∆
E
/
E
|

λ (MeV/c)

Figure 3: Dependence of the ground-state energy of 3H (compared to a con-
verged value; see text) upon the ir momentum cutoff λ =

√
mN~ω for fixed

Λ =
√

mN (N + 3/2)~ω.
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suppressed term of the form

exp

[

−
(

p

ΛN3LO

)2n

−
(

p′

ΛN3LO

)2n
]

.

In this expression, p and p′ denote the magnitude of the initial and final nucleon
momenta of this non-local potential in the center-of-mass frame and n ≥ 2. Because
the cutoff is not sharp, it should not be surprising that one has not exhausted the
uv physics of this interaction for values of single-particle Λ somewhat greater than
500 MeV/c. Note that this form of the regulator allows momentum transfers (~p− ~p′)
to achieve values in the range up to 2ΛN3LO. Can one make an estimate of the
uv regulator scale of the Idaho N3LO interaction which is more appropriate to the
discrete HO basis of this study? An emulation of this interaction in a harmonic
oscillator basis uses ~ω = 30 MeV and Nmax = N = 20 [36]. Nucleon-nucleon
interactions are defined in the relative coordinates of the two-body system, so one
should calculate ΛNN =

√

m(N + 3/2)~ω with the reduced mass m rather than the
nucleon mass mN appropriate for the single-particle states of the model space. Taking
this factor into account, the successful emulation of the Idaho N3LO interaction in a
HO basis suggests that ΛNN ∼ 780 MeV/c, consistent with the figure.

For Λ < ΛNN there will be missing contributions of size |(Λ − ΛNN)/ΛNN |, so
“plateaus” develop as λ → 0, revealing this missing contribution to |∆E/E|. We
cannot rule out the possibility of a plateau appearing at the level of 0.0001 or less for
Λ ≥ 800 MeV/c as λ → 0. This is because the smallest λ available to our calculations
is limited by λ = Λ/

√

N + 3/2 and the largest N = 36 with our computer resources.
That is, the leftmost calculated points of Fig. 3 move to higher values of λ as fixed Λ
increases above 800 MeV/c. At fractional differences of 0.001 or less, the development
of possible plateaus could be masked by round-off errors in the subtraction of two
nearby numbers, each of which may have its own error. Nevertheless, the “plateaus”
that we do see are not flat as λ → 0 and, indeed, rise significantly with decreasing
Λ < ΛNN . This suggests that corrections are needed to Λ and λ which are presently
defined only to leading order in λ/Λ. The authors of [34] take our suggested simile
of a truncated basis to a confining region quite seriously and use it to obtain a first
order correction to both Λ and λir. We hope to learn if higher-order corrections can
be directly determined by our data in a future study.

Now we turn to the second pair of cutoffs of (Λ, λir) and display in Fig. 4 the ana-
logue of Fig. 2 except that this time λir ≡ λsc =

√

mN~ω/(N + 3/2). For fixed λsc,
|∆E/E| does not go to zero with increasing Λ, and indeed even appears to rise for fixed
λsc ≥ 35 MeV/c and Λ ≥ 800 MeV/c. Such a plateau-like behavior was attributed in
Fig. 3 to a uv regulator scale characteristic of the NN interaction. Can the behavior
of Fig. 4 also be explained by a “missing contributions” argument; i. e. an argument
based upon λsc ≤ λNN

sc where λNN
sc is a second characteristic ir regulator scale im-

plicit in the NN interaction itself? One can envisage such an ir cutoff as related to
the lowest energy configuration that the NN potential could be expected to describe.
For example, the inverse of the np triplet scattering length of 5.42 fm corresponds to
a low-energy cutoff of about 36 MeV/c. The previously mentioned emulation of the
Idaho N3LO interaction in a harmonic oscillator basis [36] has λNN

sc ∼ 36 MeV/c. At
low Λ and λsc ≤ λNN

sc , |∆E/E| does fall with increasing Λ and this behavior can be
fitted by a Gaussian as shown for 3H and and other s-shell nuclei in [1]. But we will
see in the next figure that one has not yet captured the uv region at these low values
of Λ.

Fig. 5 is the analogue to Fig. 3: only the variable on the x-axis changes from λ
to λsc = λ2/Λ. For Λ < ΛNN ∼ 780 MeV/c the missing contributions and resulting
“plateaus” are as evident as in Fig. 3. (Please see discussion of Fig. 3 for an account
of possible “plateaus” for larger values of Λ.) The tendency of these plateaus to rise
as λsc → 0 again suggests a refinement is needed to this first-order definition of the
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Λ (MeV/c)

Figure 4: Dependence of the ground-state energy of 3H (compared to a converged
value; see text) upon the uv momentum cutoff Λ =

√

mN (N + 3/2)~ω for different

values of the ir momentum cutoff λsc =
√

(mN~ω)/(N + 3/2). Curves are not fits
but simple point-to-point line segments to guide the eye.
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E
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Figure 5: Dependence of the ground-state energy of 3H (compared to a converged
value; see text) upon the ir momentum cutoff λsc =

√

(mN~ω)/(N + 3/2) for fixed

Λ =
√

mN (N + 3/2)~ω.
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cutoffs. Around Λ ∼ 600 MeV/c and above the plot of |∆E/E| versus λsc in Fig. 5
begins to suggest a universal pattern, especially at large λsc. For Λ ∼ 800 MeV/c
and above the pattern defines a universal curve for all values of λsc. This is the
region where Λ ≥ ΛNN indicating that nearly all of the ultraviolet physics set by the
potential has been captured. Such a universal curve suggests that λsc could be used
for extrapolation to the ir limit, provided that Λ is kept large enough to capture the
uv region of the calculation. Fig. 5 is also the motivation for our appellation λsc,
which we read as “lambda scaling”, since this figure exhibits the attractive scaling
properties of this regulator.

We now utilize the scaling behavior displayed on Fig. 5 to suggest an extrapolation
procedure which we demonstrate in Fig. 6. The extrapolation is performed by a
fit of an exponential plus a constant to each set of results at fixed Λ. That is,
we fit the ground state energy with three adjustable parameters using the relation
Egs(λsc) = a exp(−b/λsc)+Egs(λsc = 0). The mean and standard deviation of the five
values of Egs(λsc = 0) were −7.8511 MeV and 0.0011 MeV, respectively, as suggested
by Fig. 7 in which the overlap of the five separate curves cannot be discerned. It
should be noted that our five extrapolations in Fig. 7 employ an exponential function
whose argument 1/λsc =

√

(N + 3/2)/(mN~ω) is proportional to
√

N/(~ω). This

extrapolation procedure of taking λsc =
√

mN~ω/(N + 3/2) toward the smallest
value allowed by computational limitations treats both N and ~ω on an equal basis.
The exponential extrapolation in

√

N/(~ω) is therefore distinct from the popular
extrapolation which employes an exponential in Nmax (= N for this s-shell case)
[7, 8, 9, 20] and provides a refinement to the procedures of the 1970s for dealing with
“smooth” potentials.

This extrapolation procedure treats both N and ~ω on an equal basis. For

λsc (MeV/c)

Figure 6: The ground state energy of 3H calculated at five fixed values of Λ =
√

mN (N + 3/2)~ω and variable λsc =
√

(mN~ω)/(N + 3/2). The curves are fits
to the points and the functions fitted are used to extrapolate to the ir limit λsc = 0.
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example, the extrapolation at fixed Λ = 1200 MeV/c employs values of ~ω from 41
to 65 MeV and N = 22−36. The one at fixed Λ = 800 MeV/c employs values of ~ω
from 18 to 44 MeV and N = 14−36. The curves of Fig. 6 encompass values of λsc

between 20 and 52 MeV/c. We attempted to quantify the spread in extrapolated
values by fitting only segments of the curves of this figure. Recall that the small-
est value of λsc requires the largest N . Fits to the segment from λsc = 20 MeV/c
to λsc = 40 MeV/c (always for the five displayed values of fixed Λ) resulted in a
mean of −7.8523 MeV and standard deviation of 0.0008 MeV. Cutting out the left
hand parts of the curves and fitting only from λsc = 30 MeV/c to λsc = 55 MeV/c
gave a mean of −7.8498 MeV and standard deviation of 0.0022 MeV. For both these
trials a rather large N was needed, ranging from 14 to 36 but the extrapolation is
quite stable. In contrast, values of λsc higher than those shown in Fig. 7, namely
from λsc = 50 MeV/c to λsc = 85 MeV/c, require fewer computational resources
(N = 8−22). The extrapolations have a mean and standard deviation of −7.792 MeV
and 0.042 MeV, still not so far away from the accepted value of −7.85 MeV.

Fig. 3 suggests that an extrapolation to the infrared limit could equally well be
made by taking λ → 0 for a fixed large Λ. Instead we choose to extrapolate in
~ω with an eye to future exploitation of archival calculations made in the variables
(Nmax, ~ω). In Fig. 7 we fit the ground state energy of 3H with three adjustable
parameters using the relation Egs(~ω) = a exp(−c/~ω) + Egs(~ω = 0) six times,
once for each fixed value of Λ. It is readily seen that one can indeed make an ir
extrapolation by sending ~ω → 0 with fixed Λ as first advocated in Ref. [10] and
that the five ir extrapolations with Λ > ΛNN ∼ 780 MeV/c are consistent. The
spread in the six extrapolated values is about 0.049 MeV or about 1% about the
mean of −7.832 MeV. The standard deviation is 0.020 MeV.

Now let us accept the role of the ordered pair (Λ, λir) of cutoffs in these varia-
tional calculations and examine the ordered pair (N , ~ω). That is, we take the basis

Figure 7: The ground state energy of 3H calculated at six fixed values of Λ =
√

mN (N + 3/2)~ω. The curves are fits to the points and the functions fitted are
used to extrapolate to the ir limit λ =

√
mN~ω = 0 with fixed Λ as in Fig. 6.
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Figure 8: Dependence of the ground-state energy of 3H upon ~ω = λ2/mN =
λ2
sc/[mN(N + 3/2)] for fixed N = Λ2/λ2 − 3/2 = Λ/λsc − 3/2. Curves are not

fits but spline interpolations to guide the eye.

truncation parameter N and the HO energy parameter ~ω to be variational param-
eters. We now observe convergence as the truncation of the model space is lessened
by increasing N = Nmax, where N is the specific truncation parameter N and Nmax

is the total number of energy quanta kept in the basis. Fig. 8 shows a plot of the
variational energy of the ground state of 3H plotted in this traditional way, pioneered
in Fig. 1 of [2] and continued through [37] to the present day [8, 34]. Optimum values
for the parameters that enter linearly can be obtained by solving a matrix eigenvalue
problem. But the optimum value of the nonlinear parameter must in principle be
obtained by, for example, numerical minimization which could be difficult as the al-
gorithm could easily miss the global minimum and get trapped in a local minima.
The plots such as Fig. 8 and others in the nuclear physics literature show that 1) for
small bases a change in the non-linear parameter ~ω can have a dramatic change in
the variational estimate of the ground state energy and 2) the dependence on the
nonlinear parameter decreases as the basis size increases. These observations seem
to vitiate the need for an extensive numerical minimization by varying ~ω [38]. For
example, in Fig. 8 the minimum of each fixed N curve is easily read off the plot.

From Fig. 8, we see that the variational energy decreases and thus moves away
from the converged value −7.85 MeV as ~ω → 0 at fixed N (for all N considered!).
This is readily understood in terms of Fig. 1. At fixed N one captures more infrared
physics by lowering the infrared cutoff (λir ∝

√
~ω) but misses the ultraviolet physics

because lowering ~ω also lowers the ultraviolet cutoff (Λ ∝
√
~ω). The loss of uv

physics due to the lower ~ω overwhelms the gain of ir physics and the estimate of
the ground state becomes very bad. A similar situation holds as ~ω increases: the uv
cutoff increases toward ∞ so that more uv physics is captured but the ir cutoff also
rises and more and more of the infrared physics is lost to the calculation.

The approximate minimum of the N = 8 curve is at ~ω ∼ 43 MeV which corre-
sponds to Λ ∼ 620 MeV/c and λsc ∼ 65 MeV/c. From Fig. 5 we realize that for this
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small value of Λ < ΛNN ∼ 780 MeV/c and large value of λsc > λNN
sc ∼ 36 MeV/c,

we would expect about a 30% shortfall in the ground state energy and this is what
we see in Fig. 8. At the minimum of the N = 8 curve the variational parameters are
nowhere near their limits in the (Λ, λir) regulator picture and the variational energy
is not very good. Because N ∝ Λ2/λ2 or N ∝ Λ/λsc, increasing the truncation pa-
rameter N simultaneously increases the uv cutoff and decreases the ir cutoff so that
the curves move lower and lower. We observe that, as fixed N increases, the minima
of each curve moves to a lower value of ~ω, as was previously observed in similar
calculations for 4He with this potential [8] and for a variety of nuclei (A = 2−16) [8]
with another realistic NN potential JISP16 [39]. Maris also observes a monotonic
movement to the left with a basis truncation on the single-particle basis so that the
truncation parameter N becomes Nshell rather than Nmax [40]. Apparently another
behavior, first a shift to the right and then to the left as fixed N is increased, is noted
in [34] and interpreted as first an approach to uv convergence and then, as the uv
physics is obtained a further convergence in the ir regulator. We, and other NCSM
calculations (including one with a Nshell truncation), do not see this behavior.

In Fig. 8, the monotonic movement to a lower ~ω is clear as N increases from 8
to 20, all values corresponding to Λ < ΛNN ∼ 780 MeV/c, the region in which
the uv physics has not yet been captured. As N is increased to N = 24 (not yet
possible for p-shell nuclei with present day computers and codes) the minimum moves
down to ~ω ∼ 24 MeV which corresponds to Λ ∼ 790 MeV/c , λ ∼ 150 MeV/c
and λsc ∼ 31 MeV/c. At these values the uv cutoff seems high enough (see Figs. 3
and 5) and the ir cutoff low enough (see Figs. 2 and 4) that one could argue that
convergence was nearly reached. As N increases from 24 to 36 the fixed N curves pile
up on each other, but an expanded scale (not shown) separates them to demonstrate
that the minimum stays near 24 MeV (Λ ∼ 920 MeV/c and λsc ∼ 24 MeV/c) and
the curves become somewhat independent of ~ω within a limited range. Even so,
any calculation in a finite basis should be examined from the point of view of the
more physical regulators (Λ, λir). This calculation should, in principle, always be
extrapolated to the uv and ir limits. Independence of ~ω for fixed N is due to a
playoff between the uv and ir cutoffs and it should be understood how this playoff
affects the calculation. The often heard mantra “look for independence upon the
value of ~ω because that means the series of calculations has converged” should be
retired, in my opinion.

After submission of [1], Furnstahl, Hagen and Papenbrock posted an investigation
of uv and ir cutoffs in finite oscillator spaces [34]. They assume that λsc (scaled by
a factor of

√
2 from the λsc of this paper) is the ir cutoff. They take our suggested

simile of a truncated basis to a confining region quite seriously and use the simile to
derive an explicit extrapolation formula in their ir cutoff. The derived formula is the
same (exponential in

√

N/(~ω)) as the one of [1] reviewed here and is used in the
same way: establish that the uv cutoff is large enough and then extrapolate in the
ir variable. In addition, they suggest a first (higher) order correction to both the uv
and ir regulators. The caveat to what they call a “theoretically derived ir formula”
is the remark made recently by Lieb et al.: “If one fixes the particle number N in a
very large box and calculates the shift in energy caused by [a given local one-body
potential] V , the answer depends on the box shape and boundary conditions” [41].
But this has always been true [28].

As [34] assumes that (scaled) λsc is the ir regulator, they took the behavior shown
in Fig. 4 for small λsc to suggest a second extrapolation formula for the uv cutoff.
That is, at low Λ and λsc ≤ λNN

sc , |∆E/E| falls with increasing Λ and this behavior can
be fitted by a Gaussian, as shown for 3H and other s-shell nuclei in [1]. This Gaussian
in Λ ∝

√

N(~ω) then becomes an exponential in N(~ω). Their final formula assumes
relative independence of the uv and ir extrapolations so it is a sum of exponentials with
arguments proportional to N(~ω) from the uv regulator and to

√

N/(~ω) from their ir
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regulator. These results are a useful advance on the exponential form of convergence
in N (with no mention of the role of the scale parameter ~ω) shown less concretely by
the forty-year-old theorems of [3] and [4]. The authors of [34] caution, as have we, that
results such as these should be expected only for the “smooth” potentials of [3] and [4]
(or in their momentum space characterization: “super-Gaussian falloff in momentum
space”) such as those inspired by chiral EFT or obtained by renormalization group
transformations. The extrapolation formulae appear to be successful in calculations
of open shell medium to heavy nuclei (A = 74) with nuclear interactions inspired by
chiral EFT [42].

There has been a recent turn to consider other bases for expanding the trial wave
function; bases which have a presumed better behavior at large distances than the
HO basis which has a Gaussian falloff [43]. The most effective basis used in few-
nucleon physics [44], in nucleon-nucleus scattering [45] and in nuclear reactions [46]
are the Coulomb–Sturmians. This is a complete and discrete set of the eigenfunctions
of a Sturm–Liouville problem associated with the Coulomb potential [47]. Caprio
et al. have recently used this basis to make NCSM calculations of light nuclei [48].
They found it beneficial to link the length scale parameter bl of the Sturmian with
the length scale b of the HO eigenfunction so as to provide a closer alignment of the
low-n Coulomb–Sturmian basis functions with the harmonic-oscillator basis functions.
They choose to formally truncate the Coulomb–Sturmian basis with anNmax counting
number. Thus they end up with the same ordered pair (N , ~ω) as with the HO basis.
However, the ~ω value quoted for the Coulomb–Sturmian basis is simply the ~ω of the
reference oscillator length, from which the actual l-dependent length parameters bl
are chosen to align the low-n Coulomb–Sturmian basis functions with the harmonic-
oscillator basis functions. It therefore has no direct significance as an energy scale for
the problem. Moreover, the Nmax truncation is difficult to interpret as an “energy
cut” as it is for the HO basis. Caprio et al. extrapolate to an infinite basis in the
following way: the non-linear parameter ~ω is varied to obtain the minimal energy for
the highest N available, ~ω is then fixed at that value and the convergence with N
is assumed to be exponential (extrapolation B of [8]). This is basically the procedure
of Delves [3], rooted in theorems of functional analysis, and is not directly related
to the EFT inspired cutoffs discussed here. Given that neither N nor ~ω are given
an energy interpretation in this paper, it is problematic that one can simply take
over the arguments of [1] or [34] to define new dimensionful uv or ir cutoffs for use in
extrapolation. Yet the savings in computation and increase in physical understanding
should motivate such an effort in the future.

In summary, we have introduced a practical extrapolation procedure with Λ → ∞
and λir → 0 which can be used when the size of the HO basis needed exceeds the
capacity of the computer resources as it does for 4He and 6He and certainly will for
any more massive nuclei. Unlike other extrapolation procedures the ones advocated
in this paper treat the variational parametersN and ~ω on an equal footing to extract
the information available from sequences of calculations with model spaces described
by (N , ~ω). We have established that Λ does not need to be extrapolated to ∞ but
if Λ > ΛNN set by the potential one can make the second extrapolation to zero with
either ir cutoff λsc (see Fig. 6) or λ (see Fig. 7). The choice of the scaling cutoff λsc

is especially attractive as Λ need not be held constant but any Λ large enough can
be used in the ir extrapolation. The traditional plots in the variables (N , ~ω) can be
understood by considering the uv and ir cutoffs as primary.

Acknowledgements

The study culminating in [1] was conceived and initiated at the National Institute for
Nuclear Theory’s program Effective field theories and the many-body problem in the
spring of 2009. This contribution was written while I was enjoying the stimulating



186 Sidney A. Coon

hospitality of the fall 2012 INT program Light nuclei from first principles (INT-PUB-
12-052). I am grateful to my collaborators Michael Kruse and Matthew Avetian
for the numerical aspects of the study and include them as well as U. van Kolck
and James Vary for much effort in the interpretive aspects. I thank Sigurd Kohler for
emphasizing to me the importance of the early studies of many-body systems confined
to a finite coordinate space volume.
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[9] P. Navrátil, S. Quaglioni, I. Stetcu and B. R. Barrett, J. Phys. G 36, 083101
(2009).

[10] I. Stetcu, B. R. Barrett and U. van Kolck, Phys. Lett. B 653, 358 (2007).

[11] I. Stetcu and J. Rotureau, arXiv:1206.0234 [nucl-th] (2012), to appear in Progr.
Part. Nucl. Phys.

[12] V. C. Aguilera-Navarro, M. Moshinsky andW.W. Yeh, Rev. Mex. Fisica 12, 241
(1968); D. A. Agrello, V. C. Aguilera-Navarro and J. N. Maki, Rev. Brasileira
de Fisica 11, 163 (1981).

[13] A. D. Jackson, A. Lande and P. U. Sauer, Nuc. Phys. A 156, 43 (1970); Phys.
Lett. B 35, 365 (1971); M. R. Strayer and P. U. Sauer, Nucl. Phys. A 231, 1
(1974).

[14] M. K. G. Kruse, J. M. Conroy and H. G. Miller, arXiv:1112.0292 [nucl-th]
(2011).



Infrared and ultraviolet cutoffs 187

[15] J. K. R. McDonald, Phys. Rev. 43, 830 (1933). For recent discussions in the
physics literature of this well known result see J. L. Friar, B. F. Gibson and
G. L. Payne, Phys. Rev. C 24, 2279 (1981) and N. C. Bacalis, arXiv:0809.3826
[physics.chem-ph] (2008).

[16] J. M. Irvine, G. S. Mani, V. F. E. Pucknell, M. Vallieres and F. Yazici, Ann.
Phys. (NY) 102, 129 (1976).

[17] C. Ciofi degli Atti and S. Simula, Phys. Rev. C 32, 1090 (1985).

[18] O. Portilho, J. Phys. G 28, 2409 (2002).

[19] S. Okubo, Prog. Theor. Phys. 12, 603(1954); K. Suzuki and S. Y. Lee, Prog.
Theor. Phys. 64, 2091 (1980).
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[26] P. Navrátil, No-Core Shell Model Slater Determinant Code, 1995 (unpublished).

[27] D. H. Gloeckner and R. D. Lawson, Phys. Lett. B 53, 313 (1974).

[28] For examples, see N. Fukuda and R. G. Newton, Phys. Rev. 103, 1558 (1956);
B. S. DeWitt, Phys. Rev. 103, 1565 (1956); P. W. Anderson, Phys. Rev. Lett.
18, 1087 (1967); M. Luscher, Commun. Math. Phys. 105, 153 (1986); Nucl.
Phys. B 354, 531 (1991); D. Lee and M. Pine, Eur. Phys. J. A 47, 41 (2011).

[29] S. Kreuzer and H.-W. Hammer, Phys. Lett. B 694, 424 (2011).

[30] G. Hagen, T. Papenbrock, D. J. Dean and M. Hjorth-Jensen, Phys. Rev. C 82,
034330 (2010).
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