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Abstract

The goals of ab initio theory of nuclear structure and nuclear reactions are
to preserve the predictive power of strong interactions based on QCD, to test
fundamental symmetries with the nucleus as laboratory and to develop new un-
derstandings of the vast array of nuclear phenomena. Recent progress includes
the derivation, within chiral perturbation theory (ChPT), of the leading terms
of the nucleon-nucleon (NN), three-nucleon (3N) and four-nucleon (4N) poten-
tials. Additional substantial progress includes using these ChPT interactions
to solve nuclear structure and reactions in light nuclei and some heavier nuclei
around closed shells and closed subshells. Advances in theoretical frameworks
(renormalization and many-body methods) as well as in computational resources
(new algorithms and leadership-class supercomputers) signal a new generation
of theory simulations that will yield valuable insights into origins of nuclear
shell structure, collective phenomena and complex reaction dynamics. I outline
some recent achievements that, with additional research, will strengthen the
links between nuclear theory and nuclear experiment, between nuclear physics
and astrophysics, and between nuclear physics and its practical applications.
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1 Introduction

A long-standing goal of nuclear theory is to predict nuclear structure and nuclear
reactions from knowledge of the underlying strong interactions based on the accepted
theory of the strong interactions, Quantum Chromodynamics (QCD). With this foun-
dation, we may address many fundamental questions of nuclear physics such as:

1. What controls nuclear saturation?

2. How do the nuclear shell and collective models emerge from the underlying
theory?

3. What are the properties of nuclei with extreme neutron/proton ratios?

4. Can we predict useful cross sections that cannot be measured?

5. Can nuclei provide precision tests of the fundamental laws of nature?

6. Under what conditions do we need explicit quark and gluon degrees of freedom
to describe nuclear properties?

Traditionally, we pursued this goal with meson-theoretical nucleon-nucleon (NN)
interactions that were tuned to provide high-quality descriptions of the NN scattering
phase shifts and the deuteron bound state properties. We also employed three-nucleon
forces (3NFs) that were derived from meson theory and then tuned to the properties
of A = 3 nuclei and/or other nuclear properties. The Argonne V18 [1] NN interaction
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plus the Tucson–Melbourne [2, 3] 3NF or Urbana IX [4] 3NF represent popular choices
of this genre and we continue to use these interactions.

More recently, concerted efforts have led to the development of realistic NN and
3NF based upon QCD. Chiral perturbation theory (ChPT) within effective field the-
ory (EFT) [5] provides us with a promising bridge between QCD and the hadronic
systems [6]. In this approach one works consistently with systems of increasing nu-
cleon number [7, 8, 9] and makes use of the explicit and spontaneous breaking of chiral
symmetry to systematically expand the strong interaction in terms of a dimension-
less constant, the ratio of a generic small momentum divided by the chiral symmetry
breaking scale (about 1 GeV/c). The resulting NN and 3NFs [10, 11, 12] provide
a high-quality fit to the NN data and the A = 3 ground state properties. Continu-
ing world-wide efforts are expected to provide next-generation interactions within the
coming year or two.

To solve for the properties of finite nuclei with these realistic microscopic Hamil-
tonians, one faces immense theoretical and computational challenges. Recently, ab
initio approaches have been developed that preserve all the underlying symmetries
and they converge to the exact result. If we limit our discussions to nuclei heavier than
A = 6, there are two main approaches that have proven successful with these realistic
interactions. The first approach, called No-core Shell Model (NCSM) [13, 14] or No-
core Full Configuration (NCFC) [15], diagonalizes the Hamiltonian in a suitable basis.
The second approach, called Coupled Cluster (CC) [16, 17] solves coupled equations
that emerge from a representation of the nuclear eigenstate as a correlation operator
acting on a representative Slater determinant (SD). The primary advantages of these
ab initio no core methods are their flexibility for choosing (1) the Hamiltonian; (2)
the method of renormalization/regularization; and (3) the single-particle basis. These
advantages also support the adoption of these same techniques in light-front quantum
field theory [18].

Recent developments in other ab initio approaches show additional promise for
addressing fundamental questions posed above. These include the Green’s Function
Monte Carlo (GFMC) approach [19, 20, 21, 22] using meson exchange interactions
and a lattice-simulation approach with nucleons using effective field theory [23].

Additional notable advances attempt to retain advantages of a configuration inter-
action (CI) basis while overcoming the explosion in the basis space that occurs with
the original ab initio NCSM when one addresses collective modes such as clusters
or proceeds to heavier systems. These advances include the “Importance-truncated”
NCSM [24], the “Symmetry-adapted” NCSM [25], the “Monte-Carlo” NCSM [26],
and the NCSM with a core [27] (based on ideas presented in Ref. [28]). For a more
complete recent review of the ab initio NCSM and its connections with some of these
other methods one may consult Ref. [29].

2 Ab initio No-core Shell Model (NCSM) and
Full Configuration (NCFC) methods

The starting point of ab initio nuclear theory is the non-relativistic many-body Hamil-
tonian:

HA = Trel + V =
1

A

∑

i<j

(~pi − ~pj)
2

2m
+

A
∑

i<j

Vij +

A
∑

i<j<k

Vijk + ... , (1)

where m is the nucleon mass, Vij is the NN interaction including the Coulomb in-
teraction between protons, Vijk is the three-nucleon interaction, and we allow for
higher-body interactions as well. Note that the Hamiltonian does not involve the
nuclear center of mass (CM) motion.
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We obtain solutions in a basis of Slater determinants (SDs) constructed with
single-particle states, usually from the harmonic oscillator (HO) but not exclusively.
To force the many-body eigenstates to factorize into a CM component times an in-
trinsic component, we add the “Lawson projection term” [30] β(HCM − 3

2~Ω) to the
Hamiltonian (1) to shift the spurious CM excitations. The center-of-mass Hamilto-

nian can be written as HCM = TCM+UCM, where UCM = 1
2AmΩ2 ~R2, ~R = 1

A

∑A
i=1 ~ri,

and Ω the HO frequency. With β chosen large and positive (a typical value is 10) the
eigenenergies of physical states are the low-lying solutions and are independent of the
parameter β. When a basis other than the HO is used or a many-body truncation
other than the preferred Nmax truncation is used within the HO basis, this factor-
ization may not be precise to within numerical precision. In that event, additional
investigation is needed to measure the extent of the factorization in each eigenstate.

Realistic nuclear NN interactions, such as those mentioned in the Introduction, fit
the NN phase shift data and deuteron properties to high precision. This implies that
these NN interactions have components that strongly couple low nucleon momen-
tum regions (regions typical of the nuclear Fermi momentum ≈ 1 fm−1 with higher
momentum regions ≈ 3 fm−1 and above. This strong coupling, which is a likely fea-
ture of 3NFs as well, requires us to “soften” these interactions using renormalization
techniques that preserve the exact many-body solutions in suitable limits that are
achievable with current computational methods and resources. An outline of selected
renormalization methods is presented in Section 5.

Refs. [13, 14, 31, 32, 33, 34, 35] and [15, 36, 37, 38] provide examples of the
recent advances in the ab initio NCSM and NCFC, respectively. The NCSM adopts
a renormalization method that provides an effective interaction dependent on the
chosen many-body basis space cutoff (Nmax for example discussed below). The NCFC
either retains the un-renormalized interaction or adopts a basis-space-independent
renormalization so that the exact results are obtained either by using a sufficiently
large basis space or by simple extrapolation to the infinite matrix limit. For a more
complete discussion of nomenclature and relationships to other methods, see Section 3
below.

Recent results for the NCSM employ realistic NN and 3NFs derived from ChPT
to solve nuclei with atomic numbers 10–13 [31]. Recent results for the NCFC feature a
realistic NN interaction that is sufficiently soft that binding energies and spectra from
a sequence of finite matrix solutions may be extrapolated to the infinite matrix limit
as in the case of results for the Li isotopes [38]. Experimental binding energies, low-
lying spectra, magnetic moments and Gamow–Teller transitions are well-reproduced
in both the NCSM and NCFC approaches. Convergence of long range observables such
as the rms charge radius and the electric quadrupole moment are more challenging.
A sample of recent results is presented in Section 6 below.

In a NCSM or NCFC application, one typically adopts a 3D HO for all the particles
in the nucleus (with harmonic oscillator energy ~Ω) as mentioned above, treats the
neutrons and protons independently, and generates a many-fermion basis space that
includes the lowest oscillator configurations as well as all those generated by allowing
up to Nmax oscillator quanta of excitations. Alternatives to the HO basis space
such as a Woods–Saxon basis [39] and a Coulomb–Sturmian basis [40] have recently
been investigated with promising results. The single-particle states specify the orbital
angular momentum projection and the basis is referred to as the m-scheme basis. For
the NCSM one also selects a renormalization scheme linked to the basis truncation
while in the NCFC the renormalization is either absent or of a type that retains an
infinite matrix problem.

It is important to note three recent analytical and technical advances. First,
non-perturbative renormalization has been developed to accompany these basis-space
methods and their success is impressive. Several schemes have emerged and current
research focuses on understanding the scheme-dependence of convergence rates (differ-
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ent observables converge at different rates) [36]. For an introduction to two of these
methods see Section 5. Second, impressive new extrapolation tools have emerged
[41, 42] with indications they are the forerunners of even more powerful tools based
on improved theory of the infra-red and ultra-violet properties of the interactions and
basis spaces. Third, large scale calculations are performed on leadership-class parallel
computers to solve for the low-lying eigenstates and eigenvectors and to evaluate a
suite of experimental observables. Low-lying solutions for matrices of basis-space di-
mension 10-billion on 215,000 cores with a 5-hour run is the current record. However,
one expects these limits to continue growing as the techniques are evolving rapidly
[33] and the computers are growing dramatically. Matrices with dimensions in the
several tens of billions will soon be solvable with strong interaction Hamiltonians. It
remains to be seen if the higher degree of parallelism offered by the newest technolog-
ical advances, Graphics Processor Units (GPUs) adapted for numerical simulations,
can be efficiently exploited by the many-body methods described here.

Additional advances in physics and algorithm developments are well underway
and offer additional promise. One of the current ambitious undertakings seeks to
develop a symmetry-adapted no core shell model approach [25]. In this approach,
called the Symplectic No-core Shell Model (Sp-NCSM), one augments the conventional
spherical harmonic oscillator basis with the physically relevant symplectic Sp(3,R)
symmetry-adapted configurations of the symplectic shell model that describe natu-
rally the monopole–quadrupole vibrational and rotational modes, and also partially
incorporate α-cluster correlations. The potential savings in basis space dimensions
are enormous but there is a price — increased complexity of the Hamiltonian ma-
trix elements. Current projections indicate a net large gain in the scope of physics
problems that may be addressed with the Sp-NCSM.

Another ambitious program extends the Monte Carlo Shell Model (MCSM) to
the no-core regime and greatly increases the number of active shells [26]. Since the
MCSM has superior scaling properties with the number of nucleons, once validated,
we envision this will be a very fruitful avenue for addressing heavier nuclei — possibly
the entire periodic table. However, there are daunting challenges to overcome such as
developing a load-balanced and scalable code.

3 Relationships among many-body methods

There are several quantum many-body methods that are closely related to the meth-
ods we have developed and applied. The associated nomenclatures require some
discussion as well.

The term Configuration Interaction (CI) is the broadest term that seems widely
recognized across physics disciplines. In general any method that uses a basis space
developed from Slater Determinants (SDs) of single-particle wave functions (configu-
rations) is referred to as a CI method. It covers all the methods discussed here except
the Coupled Cluster, Greens Function Monte Carlo and lattice simulation methods
mentioned above.

The term Full Configuration Interaction (FCI) was introduced by the quantum
chemists and used widely by them. FCI signifies the use of all many-body configu-
rations consistent with a chosen set of symmetries and a defined finite set of single-
particle states. Most often there is an inert core of filled single-particle states in these
calculations. An FCI calculation is considered the “gold standard” in quantum chem-
istry to which, for example, Coupled Cluster and Density Functional Theory (DFT)
approaches are often benchmarked.

The use of no-core model spaces for solving light nuclei in Hamiltonian matrix
formulations has a long history. Some of that history is summarized, including the
distinction between the FCI truncation and the Nmax truncation in Ref. [43]. For a
more recent summary, see Ref. [29].
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The term “No-core Shell Model” (NCSM) first appeared in the title of a paper
in Ref. [44] where the renormalization scheme was the Brueckner G-matrix approach
adapted to the no-core basis. Limitations to this approach included the presence
of spurious CM motion in the effective NN interaction, the G-matrix, and in the
occurrence of a free parameter, the “starting energy”. While the first limitation
remains to this day, the starting-energy dependence of this approach could be removed
by including sufficiently large sets of higher-order processes formed with the G-matrix
as building block, including effective 3NFs and beyond.

To accurately preserve all the symmetries of the underlying strong interactions
and include sufficient renormalization to achieve accurate results, we developed the
“Ab Initio No-core Shell Model” [13, 14]. Indeed, the terminology “Ab Initio No-core
Shell Model” first appeared in a title in Ref. [14] while the term “ab initio no-core
nuclear shell model” appears in the first sentence of the abstract of Ref. [13]. At the
time of its introduction, we adopted the “Okubo–Lee–Suzuki” (OLS) method [45, 46]
of renormalizing the Hamiltonian (see Section 5 below for an introduction) since it
enabled us to preserve the factorization of the CM and internal motion which is
important especially in light nuclei.

It is important to note that both the Brueckner G-matrix and the OLS approaches
evaluate effective Hamiltonians specific to the many-body basis space for that appli-
cation. That is, they are dependent on the many-body basis truncation and may also
have dependence on the atomic number. More importantly, there is no variational
upper bound property of the resulting eigensolutions and this limits the ability to
extrapolate to the infinite matrix limit.

As a guide to our recent papers where a more extensive presentation of the meth-
ods and results may be found, it is useful to note that we have used the following
terminology:

1. No-core Shell Model (NCSM) — follows the original NCSM papers where the
interaction is derived for the chosen many-body model space. This could be any
renormalization scheme such as the Brueckner approach or the OLS approach
that has a dependence on the model space cutoff. It is “ab initio NCSM” if it
respects all the symmetries of the original nuclear Hamiltonian so this includes
OLS renormalization but not Brueckner G-matrix applications.

2. No-core Full Configuration (NCFC), first introduced in the title of Ref. [15], —
signifies we use interactions independent of the basis space and achieve con-
verged eigenenergies within numerical error estimates or we extrapolate to the
infinite matrix limit with error estimates. The interactions may be either the
“bare” interactions of Eq. (1) or interactions softened via methods that are
independent of the many-body basis space. Thus, the NCFC results are in-
dependent of all basis parameters (Nmax, Nshell (number of HO shells), ~Ω,
Woods–Saxon parameters, Coulomb–Sturmian parameters, etc). This newer
terminology emerged in response to the criticism that the NCSM was not so
much of a “Shell Model” as a CI approach which did not assume a shell model
structure for the solutions. In other words, the approach was general and should,
if successful, be able to derive the “Shell Model” from first principles. One col-
league even refers to the NCSM as the “no-core no-shell no-model” approach
to underscore that criticism. Additionally, quantum chemists have adopted the
terminology of CI and FCI which are widely understood in physics so we should
include the term “Configuration” as we do with NCFC.

3. No-core Configuration Interaction (NCCI), introduced in the text of Ref. [40], —
for a more general case where the variational upper bound is obtained for an
arbitrary finite basis (i. e. includes FCI, Nmax truncation, Nshell truncation,
Coulomb–Sturmian, etc.) — i. e. without the extrapolation and error estimation
of the NCFC.
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With this newer terminology, results from basis-space independent interactions,
therefore allowing for some forms of renormalization, with extrapolation and error
estimates would be be called NCFC calculations. Without extrapolation and error
estimates, they would be called NCCI calculations according to our current usage.

This usage has evolved since we earlier used NCSM more liberally (prior to in-
troducing “NCFC” in early 2009) to include both truncated calculations preserving
variational limits as well as extrapolations with error estimates in Ref. [36].

Due to the flexibility of renormalization procedures, choice of truncations, choice
of basis, etc., it may be that the above nomenclature does not cover all cases uniquely.
That is, it is easy to see there are possible overlaps in the use of these terminologies.

4 Realistic Hamiltonians

We began our no-core investigations in the 1980s and 1990s with the best available
interactions that were meson-theoretical nucleon-nucleon interactions, tuned to pro-
vide high-quality descriptions of the NN scattering phase shifts and the deuteron
bound state properties. For example, we introduced and employed no-core spectral
distribution methods [47, 48, 49] with realistic NN interactions in advance of the
current era where direct diagonalization in large basis spaces became feasible. Those
early results produced favorable comparisons with Coupled Cluster results [50] for
total binding energies.

As mentioned earlier, we also employed 3NFs that were derived from meson theory
and then tuned to the properties of A = 3 nuclei and/or other nuclear properties
such as the binding energy of nuclear matter. The Argonne V18 [1] NN interaction
plus the Tucson–Melbourne [2, 3] 3NF or Urbana IX [4] 3NF represent popular
choices of this class of interactions. Many current investigations continue to use
these interactions. When these interactions are employed, it is possible to include
a consistent treatment of meson-exchange currents in the development of effective
operators for other observables such as electromagnetic moments and transition rates.
There is an increasing trend to using these theoretically consistent operators.

More recently, concerted efforts have led to the development of realistic NN and
3NF based upon QCD using chiral perturbation theory (ChPT) within effective field
theory (EFT) [5]. This EFT approach provides us with a promising bridge between
QCD and the hadronic systems [6]. In this approach one works consistently with
systems of increasing nucleon number [7, 8, 9] and makes use of the explicit and spon-
taneous breaking of chiral symmetry to systematically expand the strong interaction
in terms of a dimensionless constant, the ratio of a small momentum (characteristic of
the low-energy application such as nuclear structure) divided by the chiral symmetry
breaking scale of QCD (taken to be about 1 GeV/c). The resulting NN and 3NFs
[10, 11, 12] have the appearance of a pion-exchange theory (no higher mass mesons
appear explicitly nor do baryon resonances) and they provide a high-quality fit to
the NN data and the A = 3 ground state properties. The ChPT is characterized
by the appearance of low-energy constants (LECs)which are, in principle, calcula-
ble with non-perturbative methods from QCD itself. However, since they are not
calculable with current computer resources, these constants are fit to NN data and
three-nucleon systems (for the new constants that appear in the 3NFs). One hall-
mark of this approach is the natural hierarchy that places NN interactions at lower
order than 3NFs. In addition, a cross check that ChPT is producing a convergent
series, i. e. one that is “under control”, is that these LECs all turn out to be of order
unity. The appearance of an LEC of order 10, for example, would signal the poten-
tial need to rearrange the series. Such a rearrangement is under development with a
“deltafull” version of ChPT where where the delta-resonance is included explicitly as
intermediate state excitations with the ChPT graphs.

At present we employ NN interactions complete through “next-to-next-to-next-to
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leading order” (N3LO). However, the 3NFs we use are only available in the useful
partial-wave decomposed form through N2LO. Fortunately, world-wide efforts are
expected to provide ChPT interactions for both NN and 3NFs complete through
N3LO within the coming year or two. At about the same time, we expect the deltafull
versions of ChPT to become available.

We also adopt the NN interaction JISP16, a realistic NN interaction initially
developed from NN data using inverse scattering techniques [32, 51, 52]. It is then
adjusted with phase-shift equivalent unitary transformations to describe light nuclei
without explicit 3NFs. One major advantage of JISP16 is that it is considerably
softer (reduced high-momentum components) relative to the meson-exchange or ChPT
NN interactions. Since JISP16 incorporates some of the 3NF effects of the other
interactions, and is sufficiently soft, we can achieve NCFC results in light nuclei and
the results are in remarkably good agreement with experiment [15, 37, 38, 41, 53].

With all these interaction developments, we can expect an era of vigorous scientific
activity testing these improved interactions in nuclear structure and nuclear reactions.
With the emerging predictive power, we expect to be able to reliably predict quantities
that cannot be measured directly in the laboratory but have practical significance such
as in the design of advanced nuclear reactors.

5 Renormalization and regularization

Given that the NN interaction and 3NFs couple strongly the low-momentum regions
of phase space with the high-momentum regions, we require methods to soften these
interactions (reduce those couplings) while maintaining the full predictive power of
the microscopic theory. This leads to the introduction of renormalization and regular-
ization methods. When properly used, these methods allow the exact results (results
from the original input interactions) to be obtained in a systematic and controllable
approach. Different methods have been introduced and each has its advantages and
disadvantages. Here, I will summarize two of those methods that we have been using
extensively. The first is the Okubo–Lee–Suzuki (OLS) method [45, 46] and the second
is the Similarity Renormalization Group (SRG) method [54, 55, 56, 57, 58, 59]. There
is considerable freedom in each of these renormalization methods and there is ongoing
research that investigates the potential utility of these freedoms. For the subsections
of this section, I will follow our descriptions presented in Ref. [29] that should be
consulted for additional details and key references.

The topic of regulators is one that requires its own discussion. For the present
paper, I will simply mention that regulators appear at all levels of the development of
effective Hamiltonians. These occur in the choices of form factors regulating vertices
in the underlying interactions all the way up to the choice of basis space parameters
such as Nmax and ~Ω. Ultimately, the test of a good theory is to obtain converged
results that agree with experiment as regulators are removed. These challenges are
addressed, at least in part, by the ChPT approach of EFT and by the NCFC method
discussed above.

5.1 Okubo–Lee–Suzuki method

For pedagogical purposes, we outline the OLS approach with NN interactions alone
and point the reader to the literature [29] for the extensions to include 3NFs. We
begin with the simplified purely intrinsic Hamiltonian for the A-nucleon system, i. e.
we retain only the first two terms of Eq. (1) to write

HA = Trel + V =
1

A

A
∑

i<j

(~pi − ~pj)
2

2m
+

A
∑

i<j

V (~ri − ~rj), (2)
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where m is the nucleon mass and V (~ri−~rj), the NN interaction, with both strong and
electromagnetic components. Note the absence of a phenomenological single-particle
potential. We may use either coordinate-space or momentum-space NN potentials.
They may also be non-local interactions.

Next, we add the center-of-mass HO Hamiltonian to the Hamiltonian (2) HCM =

TCM + UCM, where UCM = 1
2AmΩ2 ~R2, ~R = 1

A

∑A
i=1 ~ri. In the full Hilbert space

the added HCM term has no influence on the intrinsic properties. However, when we
introduce our cluster approximation below, the added HCM term facilitates conver-
gence to exact results with increasing basis size. The modified Hamiltonian, with a
pseudo-dependence on the HO frequency Ω, can be cast into the form

HΩ
A = HA +HCM =

A
∑

i=1

[

~p 2
i

2m
+

1

2
mΩ2~r 2

i

]

+

A
∑

i<j=1

[

VN(~ri − ~rj)−
mΩ2

2A
(~ri − ~rj)

2

]

.

(3)
In the spirit of Da Providencia and Shakin [60] the OLS method [45, 46] introduces
a unitary transformation, which is able to accommodate the short-range two-body
correlations in a nucleus, by choosing an antihermitian operator S, acting only on
intrinsic coordinates, such that

H = e−SHΩ
Ae

S. (4)

In our approach, S is determined by the requirements that H and HΩ
A have the

same symmetries and eigenspectra over the subspace K of the full Hilbert space.
In general, both S and the transformed Hamiltonian are A-body operators. Our
simplest, non-trivial approximation to H is to develop a two-body (a = 2) effective
Hamiltonian, where the upper bound of the summations “A” is replaced by “a”, but
the coefficients remain unchanged. The next improvement is to develop a three-body
effective Hamiltonian, (a = 3). This approach consists then of an approximation to a
particular level of clustering with a ≤ A,

H = H(1) +H(a) =

A
∑

i=1

hi +

(

A
2

)

(

A
a

)(

a
2

)

A
∑

i1<i2<...<ia

Ṽi1i2...ia , (5)

with

Ṽ12...a = e−S(a)

HΩ
a e

S(a)

−

a
∑

i=1

hi, (6)

and S(a) is an a-body operator; HΩ
a = h1+h2+h3+ . . .+ha+Va, and Va =

∑a
i<jVij .

Note that there is no sum over “a” in Eq. (5). Also, we adopt the HO basis states

that are eigenstates of the one-body Hamiltonian
∑A

i=1hi.
If the full Hilbert space is divided into a finite model space (“P -space”) and a com-

plementary infinite space (“Q-space”), using the projectors P and Q with P +Q = 1,
it is possible to determine the transformation operator Sa from the decoupling con-
dition

Qae
−S(a)

HΩ
a e

S(a)

Pa = 0, (7)

and the simultaneous restrictions PaS
(a)Pa = QaS

(a)Qa = 0. Note that a-nucleon-
state projectors (Pa, Qa) appear in Eq. (7). Their definitions follow from the defi-
nitions of the A-nucleon projectors P , Q. The net effect of the OLS renormalization
procedure is to develop a finite P -space effective Hamiltonian decoupled from the
infinite complementary Q-space as illustrated in Fig. 1.

The unitary transformation and decoupling condition, introduced by Suzuki and
Okamoto and referred to as the unitary-model-operator approach (UMOA) [61], has
a solution that can be expressed in the following form

S(a) = arctanh(ω − ω†), (8)
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Figure 1: Schematic illustration on how Okubo–Lee–Suzuki (OLS) similarity trans-
formation yields an H̄eff in a finite model space P decoupled from the infinite com-
plementary Q-space.

with the operator ω satisfying ω = QaωPa, and solving its own decoupling equation,

Qae
−ωHΩ

a e
ωPa = 0. (9)

Let us also note that H̄a−eff = Pae
−S(a)

HΩ
a e

S(a)

Pa leads to the relation

H̄a−eff = (Pa + ω†ω)−1/2(Pa + Paω
†Qa)H

Ω
a (QaωPa + Pa)(Pa + ω†ω)−1/2. (10)

Given the eigensolutions, HΩ
a |k〉 = Ek|k〉, then the operator ω can be determined

from
〈αQ|ω|αP 〉 =

∑

k∈K

〈αQ|k〉〈k̃|αP 〉, (11)

where we denote by tilde the inverted matrix of 〈αP |k〉, i. e.,
∑

αP
〈k̃|αP 〉〈αP |k

′〉 = δk,k′

and
∑

k〈α
′
P |k̃〉〈k|αP 〉 = δα′

P
,αP

, for k, k′ ∈ K. In the relation (11), |αP 〉 and |αQ〉
are the model-space and the Q-space basis states, respectively, and K denotes a set
of dP eigenstates, whose properties are reproduced in the model space, with dP equal
to the dimension of the model space.

With the help of the solution for ω (11) we obtain a simple expression for the
matrix elements of the Hermitian effective Hamiltonian

〈αP |H̄a−eff |α
′
P 〉 =

∑

k∈K

∑

α′′

P

∑

α′′′

P

〈αP |(Pa + ω†ω)−1/2|α′′
P 〉〈α

′′
P |k̃〉Ek〈k̃|α

′′′
P 〉

× 〈α′′′
P |(Pa + ω†ω)−1/2|α′

P 〉. (12)

For computation of the matrix elements of (Pa + ω†ω)−1/2, we can use the relation

〈αP |(Pa + ω†ω)|α′′
P 〉 =

∑

k∈K

〈αP |k̃〉〈k̃|α
′′
P 〉. (13)

We note that in the limit a → A, we obtain the exact solutions for dP states of the
full problem for any finite basis space, with flexibility for choice of physical states
subject to certain conditions [62].
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On account of our cluster approximation a dependence of our results on Nm and on
Ω arises. For a fixed cluster size, the smaller the basis space, the larger the dependence
on Ω. The residual Nm and Ω dependences can be used to infer the uncertainty in
our results.

The model space P2 is defined by the maximal number of allowed HO quanta of the
A-nucleon basis states Nm from the condition 2n+ l ≤ Nm −Nspsmin, where Nspsmin

denotes the minimal possible HO quanta of the spectators, i. e., nucleons not affected
by the interaction process. For example, 10B, Nspsmin = 4 as there are 6 nucleons
in the 0p-shell in the lowest HO configuration and, e. g., Nm = Nspsmin + 2 + Nmax,
where Nmax represents the maximum HO quanta of the many-body excitation above
the unperturbed ground-state configuration. For 10B, Nm = 12 for an Nmax = 6 or
“6~Ω” calculation.

In order to construct the operator ω (11) we need to select the set of eigenvectorsK.
We select the lowest states obtained in each two-body channel. It turns out that these
states also have the largest overlap with the model space for the range of ~Ω we have
investigated and the P -spaces we select. Their number is given by the number of
basis states satisfying 2n+ l ≤ Nm −Nspsmin.

We input the effective Hamiltonian, now consisting of a relative 2-body operator
and the pure HCM term introduced earlier, into an m-scheme Lanczos diagonalization
process to obtain the P -space eigenvalues and eigenvectors. At this stage we also add
the term HCM again with a large positive coefficient (referred to as β above) to
separate the physically interesting states with 0s CM motion of the HO from those
with excited CM motion according to the Lawson method [30]. We retain only the
states with pure 0s CM motion when evaluating observables.

All observables that are expressible as functions of relative coordinates, such as
the rms radius and radial densities, are then evaluated free of CM motion effects. In
addition, all observables that are not spherically symmetric such as electromagnetic
multipole operators receive no contribution from the 0s CM motion component of
state vectors so they are correctly dependent only on the internal motion though they
may be evaluated within the full SD basis.

We close our presentation on the theoretical framework with the observation that
all observables require the same transformation as implemented on the Hamiltonian.
To date, we have found rather small effects on the rms radius operator when we
transformed it to a P -space effective rms operator at the a = 2 cluster level [13, 14].
On the other hand, substantial renormalization was observed for the kinetic energy
operator when using the a = 2 transformation to evaluate its expectation value [63].

5.2 Similarity Renormalization Group method

The Similarity Renormalization Group (SRG) method also develops effective two-,
three- (and even higher-) body forces (induced many-body interactions) while reduc-
ing the strong couplings of the available initial interactions across large regions of
momentum space. This will also aid convergence in many-body calculations provided
the induced interactions are retained to the level needed. One perceived advantage of
SRG is that it retains the effective interactions in the full (infinite) Hilbert space. With
a given SRG-evolved effective Hamiltonian, the variational principle allows smooth
extrapolations to the ground state energy from above as a function of the many-
body truncation. Thus NCFC results are, in principle, obtainable with SRG-evolved
effective Hamiltonians. This advantage is absent in the OLS approach.

The SRG is a continuous unitary transformation of the free-space Hamiltonian
H (2) (H ≡ Hλ=∞),

Hλ = UλHλ=∞U †
λ, (14)

labeled by a momentum parameter λ that runs from∞ toward zero, which keeps track
of the sequence of Hamiltonians (s = 1/λ4 has been used elsewhere [54, 64, 65]). These
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Figure 2: Illustration of how the SRG procedure [64, 66, 65, 67] weakens the strong
off-diagonal couplings of the 1S0 chiral N3LO NN potential [11, 12] in momentum
space as the flow proceeds to smaller values of λ (left to right panels). The flow
increasingly concentrates the non-vanishing potential strength to an attractive region
near the origin and a repulsive region at higher momenta with both regions lying
along the diagonal.

transformations are implemented as a flow equation in λ (in units where ~
2/M = 1),

dHλ

dλ
= −

4

λ5
[[Trel, Hλ], Hλ] , (15)

whose form guarantees that the Hλ’s are unitarily equivalent [54, 55, 56, 66].
The utility of the nucleon relative kinetic energy Trel in Eq. (15) is that it reduces

the coupling of the high- and low-momentum parts of Hλ, which means softer and
more convergent may-body calculations [36, 57]. This is evident in a partial-wave
momentum basis, where matrix elements 〈k|Hλ|k

′〉 connecting states with (kinetic)

energies differing by more than λ2 are suppressed by e−(k2−k′2)2/λ4

factors and, there-
fore, the states decouple as λ decreases. (Decoupling also results from replacing Trel in
Eq. (15) with other generators [54, 56, 58, 59] where the common feature is a generator
having diagonal or nearly diagonal structure in the relative HO basis.) The decou-
pling between the high-momentum and low-momentum parts of the NN interaction
is illustrated in Fig. 2.

To see how the two-, three-, and higher-body potentials are identified, it is useful
to decompose Hλ in second-quantized form. Schematically (suppressing indices and
sums),

Hλ = 〈T 〉a†a+ 〈V
(2)
λ 〉a†a†aa+ 〈V

(3)
λ 〉a†a†a†aaa+ · · · , (16)

where a†, a are creation and destruction operators with respect to the vacuum in

some (coupled) single-particle basis. This defines 〈T 〉, 〈V
(2)
λ 〉, 〈V

(3)
λ 〉, ... as the one-

body, two-body, three-body, ... matrix elements at each λ. Upon evaluating the
commutators in Eq. (15) using Hλ from Eq. (16), we see that even if initially there
are only two-body potentials, higher-body potentials are generated with each step
in λ. Thus, when applied in an A-body subspace, the SRG will “induce” A-body

forces. But we also see that 〈T 〉 is fixed, 〈V
(2)
λ 〉 is determined only in the A = 2

subspace with no dependence on 〈V
(3)
λ 〉, 〈V

(3)
λ 〉 is determined in A = 3 given 〈V

(2)
λ 〉,

and so on.
While it may seem natural to solve Eq. (15), in momentum representation, it is an

operator equation, so we can use any convenient basis. In our applications, we evolve
in a discrete HO basis, where spectators are handled without a decomposition and
induced many-body forces can be directly identified. Having chosen such a basis, we
obtain coupled first-order differential equations for the matrix elements of the flowing
Hamiltonian Hλ, where the right side of Eq. (15) is evaluated using simple matrix
multiplications.

Calculations may be performed in the Jacobi coordinate HO basis. We start by
evolving Hλ in the A = 2 subsystem, which completely fixes the two-body matrix
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elements 〈V
(2)
λ 〉. Next, by evolving Hλ in the A = 3 subsystem we determine the

combined two-plus-three-body matrix elements. We can isolate the three-body matrix

elements by subtracting the evolved 〈V
(2)
λ 〉 elements in the A = 3 basis [68]. Having

obtained the separate NN and NNN matrix elements, we can apply them unchanged
to any nucleus. We are also free to include any initial three-nucleon force in the
initial Hamiltonian without changing the procedure. If applied to A ≥ 4, four-body
(and higher) forces will not be included and so the transformations will be only
approximately unitary.

Once the evolved interactions are determined in the Jacobi HO basis, transforma-
tions to the SD basis are performed, in particular, when nuclei with A > 4 are studied.
The transformations of two-body interactions are standard. The correspondent 3NF
transformations were derived and implemented in Refs. [69, 70] with recent advances
presented in Ref. [71], where a JT -coupled representation was developed with a highly
efficient storage scheme, which allows us to handle 3NF matrix-element sets up to
Nmax = 12 model spaces for p-shell nuclei.

6 Recent NCSM and NCFC results

In this section, I present a selection of NCSM and NCFC results. First, recall that in
the NCFC case [15], one extrapolates to the continuum limit (infinite matrix result)
illustrated in Fig. 3.

Here, I show results for the ground state (gs) of 12C as a function of Nmax ob-
tained with the realistic NN interaction, JISP16 [32, 51, 52]. The smooth curves
portray exponential fits that achieve asymptotic independence of Nmax and ~Ω. The
NCFC gs energy (the common asymptote) of −94.5 MeV indicates overbinding of
∼ 2.5% leading us to conclude that 3NFs must play a role. The assessed uncertainty
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Figure 3: Calculated ground state (gs) energy of 12C for Nmax = 2−10 (symbols)
at selected values of ~Ω. For each ~Ω, the results are fit to an exponential plus a
constant, the asymptote, constrained to be the same for all ~Ω [15]. Horizontal lines
indicate the experimental gs and the NCFC result (uncertainty = 0.5 MeV).
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Figure 4: Ab-initio NCSM calculations the Gamow–Teller (GT) matrix element for
the beta decay of 14C [34]. Contributions to the 14C beta decay matrix element are
displayed as a function of the HO shell in the Nmax = 8 basis space using interactions
from ChPT. The top panel displays the contributions without and with the 3NF with
two reasonable choices for the 3NF parameter cD. Contributions are summed within
each shell to yield a total for that shell. The bottom section displays the running
sums of the GT contributions over the shells. Two choices for for cD in the 3NF
lead to similar strong suppression of the GT matrix element where the final sums are
closer to zero. cD = −2.0 yields the final sum closest to zero. Note, in particular, the
order-of-magnitude suppression of the 0p-shell contributions arising from the 3NF.

in the NCFC result is 0.5 MeV shown in parenthesis in the figure. The largest calcu-
lations correspond to Nmax = 10, with an m-scheme matrix dimension near 8 billion.
Nmax = 12 produces an m-scheme matrix dimension near 81 billion which we hope
to solve in the future.

A particular example of the recent NCSM accomplishments stands out and that is
the demonstration that the anomalous long half life of 14C is a consequence of ChPT
3NFs strongly quenching the Gamow-Teller (GT) matrix element [34]. The results
without and with 3NFs are shown in Fig. 4. In the top of Fig. 4 one observes that,
without 3NFs there is a large contribution to the GT matrix element coming from
the 0p-shell single particle spin flip as a neutron converts to a proton. This is the
conventional shell-model single-particle GT transition and it leads to a “normal” beta
decay halflife of a light nucleus which is not suppressed.

Inclusion of 3NFs shows little effect on the contribution of most shells to the GT
matrix element. However, the contribution of the 0p-shell terms becomes strongly
suppressed — by more than an order of magnitude in the two examples shown. The
two examples differ by changes in the LECs of the 3NF that are allowed within the
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Figure 5: Comparison of the 14F theoretical spectra with the Texas A&M Cyclotron
experiment showing excellent agreement between ab initio predictions of Ref [37] and
experiment [53]. This figure also shows comparisons with predictions of traditional
phenomenological shell model calculations with a core labelled by “WBP” and “MK”
(see Ref [53] for details).

range that is “natural” as discussed above. The conclusion is that one may easily
fit the exact experimental halflife with an allowed adjustment of the LECs for the
3NFs. However, we did not carry out this fine tuning since there remain additional
corrections from enlarging the basis and including ChPT corrections to the weak
decay matrix element. These additional small corrections will not change the main
conclusion (large suppression due to 3NFs) but will effect the fine tuning of the LECs.

As another example of NCFC achievements, we successfully predicted the spectra
for the proton unstable nucleus 14F [37] before it was measured using JISP16 [32,
51, 52] as shown in Fig. 5. This figure is adapted from the paper [53] reporting
the experimental results and presenting the comparison with our published ab initio
NCFC predictions.

As a final example illustrating recent NCSM progress in light nuclei, I select the
example of 7Li calculated with NN + 3NFs from ChPT. The resulting excitation
spectra is shown in Fig. 6 at Nmax = 4−6−8 [35] and compared with experiment
shown in the leftmost column. The HO energy is chosen, where the g.s. energy of
7Li is a minimum in the 8~Ω basis space. Note that our NN +3NF (also referred
to as “NNN” in the legend) spectral ordering is in agreement with experiment for
the 9 lowest states in 7Li and the excitation spectra is rather stable with increasing
Nmax. We also obtain theoretical excitation spectra showing comparable agreement
with experiment for 7Be.

7 Summary

The ab initio NCSM and NCFC approaches treat all A nucleons equally with modern
NN + 3NF interactions and successfully describe properties of nuclei throughout the
0p-shell. Collaborations with computer scientists and applied mathematicians as well
as the use of supercomputers is critical to the progress achieved to date. Several inves-
tigations are underway to extend these ab initio methods to nuclei with A > 16 and
to more completely unify these ab initio structure approaches with a corresponding
predictive theory of nuclear reactions [72]. The outlook is very promising for resolving
many long-standing problems in microscopic nuclear theory.
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[29] B. R. Barrett, P. Navrátil and J. P. Vary, Progr. Part. Nucl. Phys. 69, 131 (2013).

[30] D. H. Gloekner and D. R. Lawson, Phys. Lett. B 53, 313 (1974).
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[35] P. Maris, J. P. Vary and P. Navrátil, arXiv:1205.5686 [nucl-th] (2012).

[36] S. K. Bogner, R. J. Furnstahl, P. Maris, R. J. Perry, A. Schwenk and J. P. Vary,
Nucl. Phys. A 801, 21 (2008); nucl-th/0708.3754 (2007).

[37] P. Maris, A. M. Shirokov and J. P. Vary, Phys. Rev. C 81, 021301(R) (2010).

[38] C. Cockrell, J. P. Vary and P. Maris, Phys. Rev. C 86, 034325 (2012);
arXiv:1201.0724 [nucl-th] (2012).

[39] Gianina Alina Negoita, Ab initio Nuclear Structure Theory. Doctoral dissertation,
Iowa State University, 2010. ProQuest.com UMI 11359.

[40] M. Caprio, P. Maris and J. P. Vary, Phys. Rev. C 86, 034312 (2012);
arXiv:1208.4156 [nucl-th] (2012).

[41] S. A. Coon, M. I. Avetian, M. K. G. Kruse, B. van Kolck, P. Maris and
J. P. Vary, Phys. Rev. C 86, 054002 (2012); arXiv:1205.3230 [nucl-th] (2012).
See also S. A. Coon, in Proc. Int. Workshop Nucl. Theor. Supercomputing Era
(NTSE-2012), Khabarovsk, Russia, June 18–22, 2012, edited by A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, 2013 (see this book),
p. 171.

[42] R. J. Furnstahl, G. Hagen and T. Papenbrock, Phys. Rev. C 86, 031301 (2012);
arXiv:1207.6100 [nucl-th] (2012).

[43] D. C. Zheng, J. P. Vary and B. R. Barrett, Phys. Rev. C 50, 2841 (1994);
arXiv:nucl-th/9405018 (1994).

[44] D. C. Zheng, B. R. Barrett, J. P. Vary and H. Muther, Phys. Rev. C 51, 2471
(1995); arXiv:nucl-th/9410048 (1994).

[45] S. Okubo, Prog. Theor. Phys. 12, 603 (1954).

[46] K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64, 2091 (1980).

[47] J. P. Vary, R. H. Belehrad and B. J. Dalton, Nucl. Phys. A 328, 526 (1979).

[48] J. P. Vary, in Theory and Applications of Moment Methods in Many-Fermion
Systems, edited by B. J. Dalton, S. M. Grimes, J. P. Vary and S. A. Williams.
Plenum Press, New York, 1980, p. 423.

[49] F. J. Margetan and J. P. Vary, Phys. Rev. C 28, 907 (1983).
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