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Abstract

We demonstrate that the harmonic oscillator basis can be generated by the

Lanczos algorithm. We use this remarkable feature to formulate a formalism in

quantum scattering theory utilizing an expansion of scattering wave functions in

infinite series of oscillator functions. The continuum spectrum solutions of the

Schrödinger equation are found by means of Lanczos iterations. This formalism

provides a possibility to extend a nuclear shell model, in particular, an ab initio

no-core shell model, on a scattering domain.
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An impressive progress in ab initio description of nuclear structure has been
achieved during the last decade. In addition, research projects aimed at an ab initio

description of nuclear reactions have advanced. First should be mentioned a combined
no-core shell model/resonating group method (NCSM/RGM) approach developed by
Navrátil, Quaglioni et al. [1]. Various reactions with light nuclei were successfully
calculated by means of the NCSM/RGM method. Unfortunately, the RGM approach
involves some model assumptions regarding the reaction mechanism which limit the
predictive power usually associated with ab initio methods. The first attempt to cal-
culate nucleon-nucleus scattering based on quantum Monte Carlo calculations was
performed in Ref. [2]. The Gamow shell model [3] provides a possibility to calculate
widths of nuclear resonant states. A Lorentz Integral Transform method [4] makes
it possible to calculate observables in photonuclear and electroweak reactions within
various ab initio approaches. This method was successfully used in calculations of
cross sections of various photodisintegration, electrodisintegration and electroweak
reactions on light nuclei within the hyperspherical harmonics approach [5]. A gen-
eralized Lanczos technique was suggested in Ref. [6] for calculations of nuclear re-
sponse for any multipole operator and general electroweak response functions and
electromagnetic responses in particular within theoretical approaches utilizing Slater
determinants built on harmonic oscillator basis functions.

A harmonic oscillator provides a natural basis for many-body nuclear structure
studies. It is widely used in various shell model applications, in particular, in ab

initio NCSM [7, 8]. A diagonalization of the shell model Hamiltonian matrix in the
many-body oscillator basis is conventionally performed using the Lanczos algorithm.

We demonstrate below that the complete infinite harmonic oscillator basis can be
generated by the Lanczos algorithm. The Lanczos technique of generating the oscil-
lator basis can be naturally reformulated as a formalism of non-relativistic quantum
scattering theory where scattering wave functions are expanded in infinite series of os-
cillator functions. We note that this scattering theory formalism is formally equivalent
to the J-matrix formalism with oscillator basis [9–12]. An advantage of our formalism
is that it utilizes the Lanczos iterations and oscillator basis, the basic tools of various
conventional approaches to nuclear structure. Therefore this scattering formalism can
be naturally integrated into modern ab initio methods for nuclear structure studies
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generalizing them to the scattering domain. As a result, one can hope to obtain a
unified ab initio theory of nuclear structure and reactions.

We start the discussion of the proposed formalism from the case of a two-body
scattering problem. Within the quantum scattering theory, one compares the asymp-
totics of the wave functions ΨE fitting the Schrödinger equation with the Hamiltonian
H describing the relative motion in the system of interest,

HΨE = EΨE , (1)

with the asymptotics of the wave function Ψ0
E of the reference Hamiltonian H0,

H0Ψ0
E = EΨ0

E . (2)

We discuss here the case of H0 being a free Hamiltonian, i. e., it includes the operator
of kinetic energy of relative motion of colliding particles T only,

H0 = T. (3)

We are studying the states of a given angular momentum J and denote by φi the
oscillator state with i excitation quanta, i. e. the state with i oscillator excitations as
compared with the lowest oscillator state with the particular value of J . The kinetic
energy operator is known to have a tridiagonal matrix in the basis of states φi, i. e.,
matrix elements Tij = 〈φi|T |φj〉 differ from zero only if i = j or i = j ± 2. Therefore
applying the operator T to the state φi, we obtain

Tφi = Ti,i−2 φi−2 + Tii φi + Ti,i+2 φi+2. (4)

We note that the Lanczos algorithm with kinetic energy operator T generates the
oscillator basis of states with any given angular momentum. φ0 is the lowest oscillator
state with the angular momentum J . Let us use φ0 as a pivot vector in the Lanczos
procedure. By applying T to φ0, we get

Tφ0 = T00 φ0 + T02 φ2. (5)

Orthogonalizing Tφ0 to φ0 and normalizing the resulting function, we obtain φ2 as
the first Lanczos vector. The second Lanczos vector is obtained by applying T to φ2,

Tφ2 = T20φ0 + T22φ2 + T24φ4, (6)

by orthogonalizing the result to φ0 and φ2 and normalization. Clearly, φ4 appears to
be the second Lanczos vector. In the same manner we obtain φ6 as the third Lanczos
vector, etc. Thus the oscillator basis appears to be a Lanczos basis generated by the
kinetic energy operator with φ0 as a pivot vector.

We can construct the oscillator basis by Lanczos procedure not only from below,
i. e. starting from the lowest oscillator state, but also from above starting from
oscillator states with arbitrary large oscillator quanta. Suppose we have oscillator
functions φN and φN+2. Applying T to φN , orthogonalizing the result to φN and
φN+2 and normalizing, we obtain φN−2 as the next Lanczos basis state. At the next
step we obtain φN−4, etc.

Expanding the wave function ΨE in series of oscillator functions,

ΨE =
∞
∑

n=0

a2n(E)φ2n, (7)

we reduce the free Schrödinger equation (2) to an infinite set of three-term recurrent
relations (TRR)

TN,N−2 aN−2(E) +
(

TNN − E
)

aN (E) + TN,N+2 aN+2(E) = 0. (8)
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For positive energies E, these TRR have two linearly-independent solutions, SN (E)
and CN (E), which analytical expressions are well-known [9, 11, 12]. Only SN(E) fits
the physical TRR boundary condition,

T00 S0(E) +
(

T02 − E
)

S2(E) = 0, (9)

while CN (E) does not,

T00C0(E) +
(

T02 − E
)

C2(E) 6= 0. (10)

The solution SN (E) ≡ S2n(E) is related to the physical solution Ψ0
E of the free

Schrödinger equation (2) with sine-like asymptotics:

∞
∑

n=0

S2n(E)φ2n = Ψ0
E =

√

2

π
kr jl(kr) −→

r→∞

√

2

π
sin

(

kr − πl

2

)

, (11)

where k =
√

2mE/~ is the momentum, m is the reduced mass, and l is the orbital
angular momentum. The solution CN (E) ≡ C2n(E) defines the function

ΨC
E =

∞
∑

n=0

C2n(E)φ2n (12)

which is regular at the origin and asymptotically coincides with the irregular solution

Ψ0irreg
E = −

√

2

π
kr nl(kr) (13)

of the free Schrödinger equation (2):

ΨC
E −→

r→∞
Ψ0irreg

E −→
r→∞

√

2

π
cos

(

kr − πl

2

)

. (14)

An arbitrary solution of the TRR (8) is a linear combination of the solutions
SN (E) and CN (E). Properly normalized solutions can be expressed as

aN (E) = cos δ SN (E) + sin δ CN (E), N = 0, 2, 4, ... (15)

The respective wave function defined through Eq. (7) behaves asymptotically as

ΨE −→
r→∞

√

2

π
sin

(

kr − πl

2
+ δ

)

, (16)

where δ is a scattering phase shift.
Instead of the TRR solutions SN (E) and CN (E), one can use another pair of

linearly independent solutions, C+

N (E) and C−

N (E):

C±

N (E) = CN (E) ± iSN(E). (17)

With the help of C+

N (E) and C−

N (E) we can define wave functions Ψ+

E and Ψ−

E,

Ψ±

E =

∞
∑

N=0

C±

N (E)φN , (18)

with asymptotic behavior

Ψ±

E −→
r→∞

√

2

π
(∓i)l e±ikr. (19)
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The functions Ψ+

E are of a particular importance in the case of negative energies

E when k = i
√

2m|E|/~ since they decrease asymptotically as bound state wave
functions.

We suppose that the Hamiltonian H can be accurately enough approximated by

H = T + V Nmax , (20)

where T is a kinetic energy operator and V Nmax is a potential energy in the P space
spanned by oscillator states with excitation quanta N ≤ Nmax, i. e. an infinite poten-
tial energy matrix in the oscillator basis is well-approximated by a truncated finite
matrix which involves only oscillator states with excitation quanta N ≤ Nmax:

V Nmax =

Nmax/2
∑

n,m=0

|φ2n〉〈φ2n|V |φ2m〉〈φ2m|. (21)

The kinetic energy operator T is not truncated in Eq. (20). We note that in conven-
tional shell model applications not only the potential energy V but the kinetic energy
operator T is also truncated to the P space. Therefore the suggested approach can
be used to extend the nuclear shell model Hamiltonian which is expected to improve
the results obtained in conventional nuclear structure calculations. Note also that
the potential energy matrix elements 〈φN |V |φM 〉 decrease with N and M when ex-
citation quanta N and M are large enough. On the other hand, the diagonal TNN

and off-diagonal TN,N±2 kinetic energy matrix elements increase linearly with N for
large excitation quanta N . This different behavior of T and V matrix elements with
excitation quanta justifies the approximation (20).

We use H to produce the Lanczos basis from above. When applied to the oscillator
states φN and φN+2 with large enough quanta N and N + 2, N > Nmax, H has the
same effect as the pure kinetic energy operator T . Therefore we reproduce with H
the oscillator basis states φN−2, φN−4, ..., φNmax+2 in the Q space and the highest
oscillator state in the P space φNmax

. The matrix elements of H in our Lanczos basis
in the Q space and the only off-diagonal matrix element HNmax,Nmax+2 relating the
P and Q spaces are equivalent to the kinetic energy matrix elements in the oscillator
basis:

HNN = TNN , (22)

HN,N−2 = HN−2,N = TN,N−2, (23)

HN,N−m = HN−m,N = 0, (24)

where N > Nmax and m > 2.
Starting from φNmax

, the potential energy enters the Lanczos procedure. The
Lanczos procedure mixes the oscillator states in the P space. The obtained matrix
elements in the Lanczos basis HNN and HN,N−2 = HN−2,N with N ≤ Nmax differ
from TNN and TN,N+2 respectively, all matrix elements HN,N−m = HN−m,N with
any N and m > 2 vanish. As a result, for the set of coefficients aN (E) of the
expansion (7) of the wave function ΨE in the Lanczos basis, we obtain a TRR

HN,N−2 aN−2(E) +
(

HNN − E
)

aN(E) + HN,N+2 aN+2(E) = 0. (25)

This TRR should be supplemented by the boundary condition at N = 0:

H00 a0(E) +
(

H02 − E
)

a2(E) = 0. (26)

The TRR (25) is infinite, i. e. N can take any even positive value.
To find the solutions of TRR (25), we assign any non-zero value to a0(E) and

obtain a2(E) using the boundary condition (26), with known a0(E) and a2(E) we
calculate a4(E) using TRR (25), next we calculate a6(E) by means of TRR (25), etc.
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In the case of scattering states (E > 0), the expansion coefficients aN (E) with
N ≥ Nmax should be proportional to the r.h.s. of Eq. (15). Knowing the values
of two expansion coefficients in the Q space, say, aN (E) and aM (E) with M 6= N ,
M ≥ Nmax, N ≥ Nmax, we obtain the scattering phase shift as

tan δ = − aM (E)SN (E) − aN(E)SM (E)

aM (E)CN (E) − aN(E)CM (E)
. (27)

Expression (27) can be easily derived from Eq. (15).
In the case of bound states (E < 0), the coefficients aN(E) in the Q space are linear

combinations of C+

N (E) and C−

N (E). The solution C−

N (E) exponentially increases
with N while C+

N (E) exponentially decreases with N in the limit of N → ∞. We
need to find numerically a negative energy E which provides the decreasing behavior
of aN (E) with N . This is the bound state energy associated with the S-matrix pole
which improves the pure variational calculation in the finite oscillator basis.

We use the neutron-nucleus elastic scattering as an example to demonstrate how
this Lanczos formalism can be used for a description of nuclear reactions. In this
case, we construct a conventional shell model Hamiltonian HA+1 of the (A+ 1)-body
system which includes all oscillator states with excitation quanta N ≤ NA+1

max . The
Hamiltonian HA+1 acts in the P space and describes the relative kinetic energy of
all A + 1 particles and interactions between them.

We need to define also a channel Hamiltonian

hch = T n−A + HA (28)

describing scattering of the neutron on the A-body nucleus. The Hamiltonian hch

includes a kinetic energy operator of the relative n−A motion T n−A and a truncated
Hamiltonian of the A-body subsystem

HA = TA + V A. (29)

The operator TA describes the relative kinetic energy of A particles and interac-
tion V A between them. The operator HA is defined in the A-body relative motion
oscillator states with excitation quanta N ≤ NA

max. The wave function ΨA describes
the internal motion of the A-body subsystem in the ground state,

HAΨA = EAΨA. (30)

The A-body nucleus is supposed to be bound, and hence EA < 0.
We need the channel Hamiltonian to extend the action of the (A+1)-body Hamil-

tonian HA+1 on the subspace of the (A+1)-body Q space associated with the motion
in our channel. We note that the channel Hamiltonian hch acts not only in the Q
space but has also some terms acting in the P space already included in HA+1. There-
fore we cannot add hch to HA+1, we should first project out P -space terms in hch

to avoid double counting. However we should preserve the terms of hch providing
a coupling between the P and Q spaces. Therefore we define the projected channel
Hamiltonian as

Hch = PhchQ + QhchP + QhchQ, (31)

where P is a projector on the P space, Q is a projector on the Q space and

Q + P = 1. (32)

Now we can define the Hamiltonian describing our system as

H = HA+1 + Hch. (33)

We construct the Lanczos basis from above starting from channel states φNΨA

and φN+2ΨA. Here φN and φN+2 are oscillator functions of relative n−A motion
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with N and N + 2 quanta respectively. It is supposed that N > N
A+1
max where

N
A+1
max = NA+1

max + NA+1
tot −NA

tot and NA
tot and NA+1

tot are the total oscillator quanta
in the lowest configuration of the A-body and (A + 1)-body systems respectively.
Clearly our states belong to the Q space, and applying the Hamiltonian H to them is
equivalent to the application of the channel Hamiltonian Hch to them. Applying Hch

to φNΨA we obtain successively Lanczos states φN−2ΨA, φN−4ΨA, ..., φ
N

A+1
max

ΨA. The
respective TRR is

T n−A
N,N−2

aN−2(E) +
(

T n−A
NN − EA+1 + EA

)

aN (E) + T n−A
N,N+2

aN+2(E) = 0,

N > N
A+1
max . (34)

Here EA+1 is the total energy of the (A + 1)-body system, and

En−A = EA+1 − EA (35)

is a kinetic energy of the relative n−A motion.
Up to this point all Lanczos states φN−2ΨA, φN−4ΨA, ..., φ

N
A+1
max

ΨA were obtained

analytically. Starting from the Lanczos vector φ
N

A+1
max

ΨA, the complete (A+1)-particle

P -space Hamiltonian HA+1 is involved in the Lanczos procedure. All the remaining
Lanczos iterations look like the conventional Lanczos procedure used in standard shell
model codes with a specific pivot vector φ

N
A+1
max

ΨA. Note however that the Hamilto-

nian (33) involves an additional term Hch [see Eq. (31)] and the pivot vector φ
N

A+1
max

ΨA

generally includes a few terms with excitation quanta N > NA+1
max when the A-body

wave function ΨA is a mixture of A-body components ΨA
M with excitation oscillator

quanta M = 0, 2, 4, ..., NA
max:

ΨA = α0ΨA
0 + α2ΨA

2 + α4ΨA
4 + ... + αNA

max
ΨA

NA
max

. (36)

By means of the Lanczos algorithm we obtain TRR

HA+1

N,N−2
aN−2(E) +

(

HA+1

NN − EA+1
)

aN (E) + HA+1

N,N+2
aN+2(E) = 0,

N ≤ N
A+1
max , (37)

where
HA+1

N
A+1
max ,NA+1

max +2
= T n−A

N
A+1
max ,NA+1

max +2
. (38)

The Lanczos iterations will mix all many-body states in the (A+ 1)-body system.
Generally the number of Lanczos iterations can be as large as the dimensionality of
the (A + 1)-body P space. N in the TRR (37) does not have a meaning of oscillator
quanta, it is used only to distinguish various Lanczos basis states and can take negative
values. After some reasonable number of Lanczos iterations we should stop and solve
the combined set of TRR (34) and (37) for bound or scattering states by the methods
discussed above.

The proposed approach can be extended to describe the scattering of charged
particles. The Coulomb interaction between all protons should be, of course, included
in HA+1. The problem is how to account for the long-range Coulomb interaction
between two colliding clusters V Coulomb in the channel Hamiltonian Hch. This can
be done by two different ways.

One of the respective techniques has been suggested in Ref. [13] and was widely
used in various applications within Resonating Group Method by Kiev group (see,
e. g., Ref. [14]). In this case, we explicitly include the Coulomb interaction between
two colliding clusters V Coulomb in the channel Hamiltonian Hch. At large excitation
quanta, the operator T n−A +V Coulomb can be accurately approximated by a tridiag-
onal matrix [13]. Therefore at large excitation quanta we can still use TRR (34) with
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matrix elements T n−A
NN corrected by the Coulomb interaction. However the Coulomb

interaction starts mixing P and Q space states at larger values of excitation quanta
than the strong nucleon-nucleon interaction. Therefore Lanczos iterations will involve
the P space states at larger values of excitation quanta than in the case of neutron-
nucleus scattering. This is equivalent to adding a few additional vectors from the Q
space to a huge number of basis states in the P space in the conventional diagonal-
ization of the shell model Hamiltonian by means of Lanczos iterations.

Another method for calculating of Coulomb-distorted scattering phase shifts was
suggested in Ref. [12] and further verified in Ref. [15]. The idea of this method is that
we can cut the Coulomb interaction at some distance rb from the origin and to use
the above technique to calculate the scattering phase shifts in this system which does
not have a long-range interaction any more. The Coulomb-distorted scattering phase
shifts should be recalculated from the obtained phase shifts by means of a simple
analytical formula (see Refs. [12, 15] for details). If the cutoff distance rb coincides
with the classical turning point of the highest single-particle oscillator state involved
in the P space, the matrix elements of the Hamiltonian HA+1, the most complicated
part of the total Hamiltonian (33), are unaffected (or only very slightly affected) by
the Coulomb potential cutoff due to the fast decrease of oscillator functions beyond
the classical turning point. The Coulomb interaction can be omitted in the Q-space
part of the channel Hamiltonian Hch; however it may be needed to account for the
Coulomb interaction in calculation of some of the Hch matrix elements coupling the P
and Q spaces.

We hope that the suggested Lanczos approach will be efficient in the ab initio

description of various nuclear reactions with light nuclei and for improving results for
bound state energies obtained in shell model calculations.
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