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Bound states
Resonance states
Hoyle state
Nature of resonance states in three-cluster continuum

2 Selfconsistency of different methods
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Resonance in three-cluster continuum

Resonance state is generated in one channel, which is
weakly coupled to other channels.
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Motivations

Resonance in three-cluster continuum

Resonance state is generated in one channel, which is
weakly coupled to other channels.

Resonance is spread over all open channels. This type of
resonance was predicted by A. Baz’ and called as a
diffusion-like resonance. The resonance is attributed to the
effect that “the system spends most of its time wandering
from one channel to another”.
A. I. Baz’. “Diffusion-like processes in the quantum theory
of scattering,” Soviet J. Exp. Theor. Phys., vol. 43,
pp. 205–211, 1976.
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12C

Borromean nucleus

Wikipedia: Borromean rings.
The name "Borromean rings" comes from their use in the coat
of arms of the aristocratic Borromeo family in Italy (XII-XIII
century). The link itself is much older and has appeared in Gandhara (Afghan) Buddhist art from around the

2nd century, and in the form of the valknut on Norse image stones dating back to the 7th century.
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Borromean nucleus. Hoyle state



Introduction Microscopic three-cluster model Theoretical analysis Summary

12C

Synthesis of 12C. Hoyle state

3α⇒12 C∗ ⇒12 C + γ
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12C

Hoyle state

Hoyle state is the 0+ resonance state in 12C

Energy of the Hoyle state is E = 0.4 MeV
above the α+ α+ α threshold
or E = 7.65 MeV above the 12C ground state

Very small width of the Hoyle state Γ = 8.5 eV,
compare with width of the 0+ resonance state in 8Be
Γ = 5.57 eV

F. Hoyle. “On Nuclear Reactions Occurring in Very Hot Stars. I.
the Synthesis of Elements from Carbon to Nickel.”
Astrophysical Journal Supplement, vol. 1, p.121 (1954).
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12C

Methods to study resonance states.

Complex Scaling Method (CSM)

Analytical Continuation on Couple Constant Method
(ACCCM)

Algebraic Model with the Hyperspherical Harmonics Basis
(AMHHB)
Models reducing three-cluster system to two-cluster
system: α+ α+ α⇒ α+8 Be

Microscopic R Matrix Method (MRM)
Algebraic Model with the Gaussian and Oscillator Basis
(AMGOB)
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12C

Our model AMHHB

V. Vasilevsky, A. V. Nesterov, F. Arickx, J. Broeckhove.
Phys. Rev. C, vol. 63, 034606 (16 pp), 2001.

V. Vasilevsky, A. V. Nesterov, F. Arickx, J. Broeckhove.
Phys. Rev. C, vol. 63, 034607 (7 pp), 2001.

J. Broeckhove, F. Arickx, P. Hellinckx, V. S. Vasilevsky,
A. V. Nesterov. J. Phys. G Nucl. Phys., vol. 34,
pp. 1955–1970, 2007.

V. S. Vasilevsky, F. Arickx, J. Broeckhove, V. N. Romanov.
Ukr. J. Phys., vol. 49, no. 11, pp. 1053–1059, 2004.

V. Vasilevsky, A. V. Nesterov, F. Arickx, and J. Broeckhove.
Phys. Rev. C, vol. 63, 064604 (8 pp), 2001.
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12C

Application of AMHHB

6He = α+ n + n
6Be = α+ p + p
5H = t + n + n
5B =3 He + p + p
4H = d + n + n
4Li = d + p + p
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12C

Our model AM GOB (GOBLIN)

V. S. Vasilevsky, F. Arickx, J. Broeckhove, T. P. Kovalenko.
“A microscopic three-cluster model with nuclear
polarization applied to the resonances of 7Be and the
reaction 6Li(p,3 He)4He,” Nucl. Phys. A, vol. 824,
pp. 37–57, 2009.

A. V. Nesterov, V. S. Vasilevsky, T. P. Kovalenko. “Effect of
cluster polarization on the spectrum of the 7Li nucleus and
on the reaction 6Li(n,3 H)4He,” Phys. Atom. Nucl., vol. 72,
pp. 1450–1464, 2009.
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12C

Our model allows us

to calculate S matrix

to determine energy and total width of a resonance state

to calculate partial widths of a resonance state

to find wave function(s) of a resonance state

to determine the most probable three-cluster configuration
in coordinate and momentum space

to determine optimal way for decay of resonance states
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12C

Linear chain of alpha-particles

There are around 100 theoretical papers suggesting linear
configuration of three alpha-particles at the Hoyle state and
other excited states of 12C.

1 G. S. Anagnostatos, “Alpha-chain states in 12C,” Phys. Rev. C, vol. 51, pp. 152–159, 1995.

2 A. C. Merchant and W. D. M. Rae, “Systematics of alpha-chain states in 4N-nuclei,” Nucl. Phys. A, vol. 549,
pp. 431–438, 1992.

3 Y. Kanada-En’yo, “The Structure of Ground and Excited States of 12C,” Progr. Theor. Phys., vol. 117,
pp. 655–680, 2007.
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Some key references

Microscopic models of 12C.

1 K. Arai, “Resonance states of 12C in a microscopic cluster
model,” Phys. Rev. C, vol. 74, p. 064311, Dec. 2006.
(CSM).

2 R. Pichler, H. Oberhummer, A. Csótó, and S. A.
Moszkowski, “Three-alpha structures in 12C,” Nucl. Phys.
A, vol. 618, pp. 55–64, Feb. 1997. (CSM).

3 P. Descouvemont and D. Baye, “Microscopic theory of the
8Be(α, γ)12C reaction in a three-cluster model,” Phys. Rev.
C, vol. 36, pp. 54–59, July 1987. (MRM).
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Peculiarities of a microscopic three-cluster model

Due to antisymmetrization, the intercluster interaction is
nonlocal and energy-dependent.

It contains three-body forces, which originate from NN
interaction, kinetic energy and overlap kernel.

Square-integrable, orthogonal basis of functions is the best
remedy to treat such systems
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AMHHB and other methods
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Wave Function

Three-cluster wave function

ΨJ = Â {Φ (α1)Φ (α2)Φ (α3) f (x, y)}J

where

Φ (αν) is a shell-model wave function for the internal
motion of α-particle (ν = 1,2,3) (fixed)
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Wave Function

Three-cluster wave function

ΨJ = Â {Φ (α1)Φ (α2)Φ (α3) f (x, y)}J

where

Φ (αν) is a shell-model wave function for the internal
motion of α-particle (ν = 1,2,3) (fixed)

f (x, y) is a wave function of inter-cluster motion (to be
determined)

Â is the antisymmetrization operator
12C is a system of 12 fermions and 3 bosons
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Wave Function

Jacobi coordinates
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Hyperspherical Harmonics

Hyperspherical Harmonics

Hyperspherical coordinates

ρ =

√
x2 + y2 hyper-radius,

θ = arctan
(
|y|
|x|

)
hyper-angle,

x̂ = x/ |x| , ŷ = y/ |y| unit vectors

|x| = ρ cos θ

|y| = ρ sin θ
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Hyperspherical Harmonics

Hyperspherical Harmonics

Basis of the Hyperspherical Harmonics

Ψ = Â {Φ (α1)Φ (α2)Φ (α3) f (x, y)}

= Â
{
Φ (α1) Φ (α2) Φ (α3) f

(
ρ, θ; x̂, ŷ

)}

=
∑

nρ,K ,l1,l2

Cnρ,K ,l1,l2

∣∣nρ,K , l1, l2;LM;
(
ρ, θ; x̂, ŷ

)〉

where |nρ,K , l1, l2;LM〉 is the three-cluster oscillator functions
(basis functions of the Hyperspherical Harmonic Method)

|nρ,K , l1, l2;LM〉 =

= Â
{
Φ (α1) Φ (α2) Φ (α3)Rnρ,K (ρ)χK ,l1,l2 (θ)

{
Yl1

(
x̂
)

Yl2

(
ŷ
)}

LM

}
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Hyperspherical Harmonics

Hyperspherical Harmonics

Table: Relations between variables and quantum numbers, which
determine dynamics of three-cluster triangle

Triangle Variables Quantum numbers
Size ρ nρ
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Hyperspherical Harmonics

Hyperspherical Harmonics

Table: Relations between variables and quantum numbers, which
determine dynamics of three-cluster triangle

Triangle Variables Quantum numbers
Size ρ nρ

Shape θ K
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Hyperspherical Harmonics

Hyperspherical Harmonics

Table: Relations between variables and quantum numbers, which
determine dynamics of three-cluster triangle

Triangle Variables Quantum numbers
Size ρ nρ

Shape θ K
Rotation x̂, ŷ-unit vectors l1, l2, LM

Numeration of the three-cluster channels:

c = {K , l1, l2}
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Hyperspherical Harmonics

Hyperspherical Harmonics. Density distribution

Density distribution:

D (θ) =
∣∣χK ,l1,l2 (θ)

∣∣2

can be displayed as a function of θ or cos θ = |x|/ρ.
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Hyperspherical Harmonics

Hyperspherical Harmonics, K = 4

From acute to obtuse triangle
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Hyperspherical Harmonics

Hyperspherical Harmonics, K = 6
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Hyperspherical Harmonics

Internal and asymptotic part of wave function

Ψ =
∑

nρ,K ,l1,l2

Cnρ,K ,l1,l2 |nρ,K , l1, l2;LM〉 =

=
∑

nρ≤Ni

∑

K≤K (i)
max

∑

l1,l2

C(i)
nρ,K ,l1,l2

|nρ,K , l1, l2;LM〉

+
∑

nρ>Ni

∑

K≤K (a)
max

∑

l1,l2

C(a)
nρ,K ,l1,l2

|nρ,K , l1, l2;LM〉

Here Ni marks border between internal and asymptotic regions,

K (i)
max ≥ K (a)

max

and

C(a)
nρ,K ,l1,l2

= C(a)
nρ,c = δc0cψ

(−)
K (kρn)− Sc0cψ

(−)
K (kρn)
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Hyperspherical Harmonics

Asymptotic part of Hamiltonian

The effective three-cluster potential which originates from the
nucleon-nucleon interaction

V (NN)

c,c̃ =
Vc,c̃

ρ3

and from the Coulomb interaction

V (C)

c,c̃ =
Zc,c̃

ρ
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Theoretical set-up

Input parameters

NN potential

Minnesota potential
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Theoretical set-up

Input parameters

NN potential

Minnesota potential

Basis
Hypermomentum: Kmax = 14 for even parity states
Hypermomentum: Kmax = 13 for odd parity states
Hyperradial excitations: nρ ≤100
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Theoretical set-up

Input parameters

Adjustable parameters

Oscillator length b: is adjusted to minimize energy of the α
particle.

Majorana parameter u: is adjusted to reproduce phase
shifts of α+ α scattering and energy and width of 0+, 2+

and 4+ resonance states in 8Be.
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Theoretical set-up. Minnesota potential

Vij =

[
VR +

1
2

(
1 + Pσ

ij

)
VT +

1
2

(
1 − Pσ

ij

)
VS

] [
1
2

u +
1
2
(2 − u)Pr

ij

]

where

VR = V0R exp
{
−kR

(
r i − r j

)2
}

VT = V0T exp
{
−kT

(
r i − r j

)2
}

VS = V0S exp
{
−kS

(
r i − r j

)2}
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Theoretical set-up

Table: Number of channels for unsymmetrized and symmetrized
Hyperspherical Harmonics.

Jπ 0+ 2+ 4+ 1− 3−

Kmax 14 14 14 13 13 Clusters
Nch ({K , l1, l2}) 36 84 105 56 84 A1 6= A2 6= A3

Nch ({K , l1, l2}) 20 44 54 28 42 A1 = A2 6= A3

Nch ({K , ν}) 8 16 19 9 14 A1 = A2 = A3
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S-matrix representation

By solving system of the dynamic equations, we obtain
scattering S-matrix ‖Scc′‖ for Nch channel system and Nch

wave functions. Two different representations for S-matrix:
Inelastic parameter ηc,c′ and corresponding phase shift
δc,c′

Sc,c′ = ηc,c′ exp
{

2iδc,c′

}

Eigenphase shift δν or S-matrix

Sν = exp {2iδν} ,

where ν (=1,2,. . . , Nch). The relation between the original∥∥Sc,c′

∥∥ and diagonal ‖Sν‖ forms of the S-matrix is

Sc,c′ =
∑

ν

Uc
νSνUc′

ν

where ‖Uc
ν‖ is an orthogonal matrix.
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Energy and width of resonance state

Energy Er and total width Γ of the resonance state are
determined in a traditional way through the first and second
derivatives of the eigenphase shift δν :

d2δν
dE2 = 0 =⇒ Er , Γ = 2

(
dδν
dE

∣∣∣∣
Er

)−1

.
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Convergence

Bound states
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Convergence

Resonance states. First 0+ resonance. Kmax = K (i)
max = K (a)

max
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Convergence

Resonance states. Second 0+ resonance. Kmax = K (i)
max = K (a)

max
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Convergence

Internal and asymptotic regions
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Convergence

Resonance state Jπ = 2+. Phase shifts and inelastic parameters.



Introduction Microscopic three-cluster model Theoretical analysis Summary

Convergence

Resonance state Jπ = 2+. Eigenphase shifts.
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Convergence

Resonance states

Table: Energy (MeV) and width (keV) of the 0+ and 2+ states
calculated with K (+)

max

Lπ Kmax 0 4 6 8 10 12 14
0+ E 0.402 0.750 0.742 0.715 0.697 0.684 0.684

Γ 205.1 13.40 11.79 7.10 4.35 2.71 2.77
0+ E 1.151 7.340 6.094 5.546 5.538 5.158 5.141

Γ 510 898 422 539 586 534 523
2+ E - 3.276 2.886 2.830 2.78 2.737 2.731

Γ - 30.19 13.07 11.85 9.95 8.84 8.75
2+ E - 3.504 3.269 3.215 3.170 3.143 3.113

Γ - 275 352 308 280 264 247
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Convergence

Partial widths of resonance states.

Table: Partial widths of resonance states of 12C. Energy is in MeV,
total and partial widths are given in keV.

Lπ 0+ 2+ 2+

E 0.684 2.775 3.170
Γ 2.786 9.95 280.24
Γ1 2.786 K = 0 6.11 K = 2 13.46 K = 2
Γ2 0 K = 4 3.84 K = 4 278.89 K = 4
Γ3 0 K = 6 <10−5 K = 6 <10−5 K = 6

Total width Γ =
∑

i Γi .
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Dominant way for decay of resonance states.

Partial widths of resonance states.

Table: Partial widths of resonance states of 12C. Energy is in MeV,
total and partial widths are given in keV.

Lπ 4+ 1− 3−

E 5.603 3.516 0.672
Γ 0.55 0.210 8.34
Γ1 0.23 K = 4 0.206 K = 3 8.34 K = 3
Γ2 0.15 K = 6 0.002 K = 5 0 K = 5
Γ3, 0.16 K = 8 <10−5 K = 7 0 K = 7

Dominant channels
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Dominant way for decay of resonance states.

Correlation function for the ground 0+ state .
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Dominant way for decay of resonance states.

Correlation function for the first 0+ resonance .

LINEAR CONFIGURATION
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Dominant way for decay of resonance states.

Correlation function for the first 0+ resonance . Momentum space
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AMHHB versus other methods and experiment

Comparison to the literature. I

Table: Bound and resonance states of 12C obtained with the AMHHB
model and CSM. E in MeV, Γ in keV.

Method AMHHB CSM-Arai [1] CSM-Pichler [2]

Jπ E Γ E Γ E Γ

0+ −11.372 −11.37 −10.43
0.684 2.78 0.4 < 1 0.64 14
5.156 534.00 4.7 1000 5.43 920

2+ −8.931 −8.93 −7.63
2.775 9.95 2.1 800 6.39 1100
3.170 280.24 4.9 900

1 K. Arai, “Resonance states of 12C in a microscopic cluster model,” Phys. Rev. C, 74, 064311, 2006.

2 R. Pichler, H. Oberhummer, A. Csótó, and S. A. Moszkowski, “Three-alpha structures in 12C,” Nucl. Phys.
A, 618, 55, 1997.
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AMHHB versus other methods and experiment

Comparison to the literature. II

Table: Bound and resonance states of 12C obtained with the AMHHB
model and CSM. E in MeV, Γ in keV.

Method AMHHB CSM-Arai [1] CSM-Pichler [2]

Jπ E Γ E Γ E Γ

4+ −3.208 −3.21
5.603 0.55 5.1 2000

1− 3.516 0.21 3.4 200 3.71 360
3− 0.672 8.34 0.6 < 50 1.16 25

4.348 2.89 7.1 5400 11.91 1690
5.433 334.90 9.6 400

1 K. Arai, “Resonance states of 12C in a microscopic cluster model,” Phys. Rev. C, 74, 064311, 2006.
2 R. Pichler, H. Oberhummer, A. Csótó, and S. A. Moszkowski, “Three-alpha structures in 12C,” Nucl. Phys.

A, 618, 55, 1997.
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AMHHB versus other methods and experiment

Comparison to experiment. I

Table: Bound and resonance states of 12C. E in MeV, Γ in keV.

AMHHB Experiment [1]
Jπ E Γ E Γ

0+ −11.372 −7.2746
0.684 2.78 0.3796 ± 0.0002 (8.5 ± 1.0)× 10−3

5.156 534.00 3.0 ± 0.3 3000 ± 700
2+ −8.931 −2.8357 ± 0.0003

2.775 9.95 3.89 ± 0.05 430 ± 80
3.170 280.24 8.17 ± 0.04 1500 ± 200

4+ −3.208
5.603 0.55 6.808 ± 0.015 258 ± 15

1 F. Ajzenberg-Selove, “Energy levels of light nuclei A = 11-12,” Nucl. Phys. A, 506, 1, 1990.
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AMHHB versus other methods and experiment

Comparison to experiment. II

Table: Resonance states of 12C. E in MeV, Γ in keV.

AMHHB Experiment [1]
Jπ E Γ E Γ

1− 3.516 0.21 3.569 ± 0.016 315 ± 25
3− 0.672 8.34 2.366 ± 0.005 34 ± 5

4.348 2.89
5.433 334.90

1 F. Ajzenberg-Selove, “Energy levels of light nuclei A = 11-12,” Nucl. Phys. A, 506, 1, 1990.
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Optimal interaction

Energy of the ground 0+ state as a function of u.
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Optimal interaction

Energy and width of the Hoyle state as a function of u.
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Summary

Resonance state in three-cluster system is generated
mainly by one (dominant) channel, which is weakly
coupled to other open (nondominant) channels.

However these (nondominant) channels effect very much
parameters (energy and width) of the resonance state.

There is a very small probability for linear chain
configuration in bound and resonance states of 12C.

More details in V. Vasilevsky et al. Phys. Rev. C, vol. 85,
034318, 2012.
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Gratitude

THANK YOU VERY MUCH!
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