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  Asymptotic normalization coefficients (ANC) 
determine the asymptotics of nuclear wave functions in 
binary channels. ANCs are proportional to vertex constants 
(VC), which determine the virtual processes A  B+C.  

 
 
                                  

 

 

VCs and ANCs are fundamental nuclear characteristics. They 

are used actively in analyses of nuclear reactions within 

various approaches. VCs and ANCs extracted from one 

process can be used for the prediction of characteristics of 

other processes. Comparing of empirical values of VCs and 

ANCs with theoretical ones enables one to evaluate the 

quality of a model. ANC for the channel A  B+C determines 

the probability of the configuration B+C in nucleus A at 
distances greater than the radius of nuclear interaction. 
 

 



  Thus ANCs arise naturally in cross sections of nuclear 

reactions between charged particles at low energies, in 
particular, of astrophysical nuclear reactions.   

Note: Due to the Coulomb barrier cross sections at 

astrophysical energies are so small that their direct 
measurement in laboratories is very difficult, or even 
impossible.  

  



Definition and Properties of ANCs and NVCs 
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Coulomb interaction   

-  Coulomb  parameter. 

NVC  GABC(LS) is the on-shell matrix element of the virtual  

A B+C process in the given partial-wave state LS.  

It is related to the amplitude of elastic BC scattering: 
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GABC   and  CABC  are interrelated: 
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NBC arises due to the identity of nucleons.  

Often NBC is included into CABC.  
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NB! The asymptotics (1) can be rigorously proved for two-body 

systems only. For three- and more particle systems the 

asymptotics of overlap integrals may differ from (1) (‘anomalous 
asymptotics’). (L.B. Yad. Fiz. 1981. V.34. P.944).  

Considering the Fourier component I(q) of the overlap integral 

I(r) one gets  
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where        is the nearest to the origin singular point of the 

vertex function G(q) for the                    vertex. If      then 

the second term in (2) dominates at r →∞.     
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Consider the diagram of Fig. 1, which contributes to G(q). It 

results from the Faddeev expansion in the simplest three-

body model, in which a  consists of d, f and c, b is a bound 
state of d and f, and e is a bound state of f and c.     
For that diagram p = 2 and the singular point is:  
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Fig. 1 

At any          the ‘anomalous’ condition                could be 

satisfied if           and           are sufficiently small.  
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Configuration representarion 

Consider the same system c, d, f with bound states 

a = {cdf}, b = {df}, and e = {fc}.  

Let  ψa(r,ρ), φb(ρ), φe(rfc) be the inner wave functions  

of a, b, and e (r = rbc, ρ = rdf ).  

The overlap integral for a → b +c  is 
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According to S.P.Merkuriev. Yad.Fiz. 1974. V. 19. P. 447  

at r→∞ and finite values of  ρ  ψa(r,ρ) possesses the following 

asymptotics (for the short-range interaction) 
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where ubc(nbc) is the certain function of angular variables. 

At finite ρ φb(ρ)  is generally finite. Hence, inserting (5) into (4), 

one sees that the contribution I1(r) to the overlap integral I(r) 

from the domain Ω1 of finite ρ possesses the normal 

asymptotics 
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Ω1 domain corresponds to the configuration: 



Consider now the domain Ω2 of ρ, in which rfc  is finite. 
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Hence at r →∞ for all ρ     Ω2   ρ →∞ and  
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Analogously to (5) at r →∞  and finite values of  rfc one 

obtains  


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Besides, at ρ →∞  
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It follows from (8), (9), and (7)  that at  ρ →∞  the contribution of 

Ω2 to I(r) (4) is  
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Thus the asymptotics of I2(r) coincides exactly with the 

anomalous asymptotics due to diagram1. At            the 

asymptotics of the full overlap integral I(r) coincides with 

the asymptotics (10). This result is generalized easily to the 

presence of the Coulomb interaction. 
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Methods of determination of ANCs and VCs 

1. Microscopic calculations  very difficult 

1a. Coordinate representation  asymptotical region 

small values of wave functions low accuracy 
1b. Momentum representation  continuation to imaginary 

 values of momenta 

2. Analysis of experimental data 

2a. Data on bound nuclear states cannot be used since VCs 

and ANCs  are independent nuclear characteristics. 

 

 Alternative way  analysis of scattering and reactions 

 

The only reliable calculation of ANCs for an α particle  
M.Viviani, A.Kievsky, M.Rosati (PRC 71, 024006 (2005)). 



2b. Analysis of data on transfer reactions  A(x,y)B 

proceeding through the pole mechanism 

C 

A 

x y 

B 

The cross section of this reaction possesses the 2nd 

order pole at z = z0  (z = cos θ, |z0| > 1) . If one 

extrapolates the experimental values of (z- z0)
2 σ(z) to 

the pole position (σ(z) is the differential cross section), 

one immediately obtains the value of |GABC GyxC|2.  

Note. Account of the Coulomb interaction in the vertices of 

the diagram turns a pole to a branch point. 



 

2c. Extrapolation in energy E of the partial-wave amplitude of 

elastic BC scattering (obtained by the phase-shift analysis) 

to the pole corresponding to the bound state A.  

 

B B 

C C 

A 

2d. For peripheral nuclear reactions VC could be obtained  

from the DWBA analysis of differential cross sections . 



The problem of using continuum-state data to obtain 

information on bound-state characteristics is not trivial !!! 

“Bound-state properties cannot be extracted from the phase shifts 

of a single partial wave, as a matter of principle”. 

J-M. Sparenberg (Phys. Rev. C, 69, 034601 (2004)) 

This assertion is based on the existence of phase-equivalent 

potentials (PEP). Different PEPs lead to coinciding phase shifts 

δL(E) but properties of the bound states for a given L are different.  

Inverse scattering problem: to restore a local potential one needs: 

 

i)  δL(E), 0   E  . 

ii) 2NL parameters (NL – number of bound states for a given L). 

 2NL         NL  binding energies and NL  ANCs. 



Methods of constructing PEP’s 

1) Bargmann potentials (R.Newton, Scattering Theory). 

2) Supersymmetric transformation (E.Witten (1981)). 

 

 Supersymmetric transformation can be used to construct PEP, 
which differs from the initial potential by any modification of the 
bound spectrum. A bound state can be added or suppressed; its 
binding energy and/or ANC can be modified. 

Inference: Within the formal potential approach with 

arbitrary potentials and without any additional conditions, 

it is impossible to determine unambiguously 

characteristics of bound states knowing only δL(E). 



The way to resolve the ambiguity problem: 

The natural requirement that amplitudes of processes 

are analytic functions of their kinematic variables. 

       Microcausality principle  Analyticity 

Using analiticity and knowing the partial-wave BC scattering 

amplitude fL(E) on some segment of the real positive semiaxis, 

one can continue analytically fL(E) to the unphysical region E < 0 

and obtain both the position of the pole E  = -ε < 0 and the 

residue of fL(E) at that pole, that is, VC and ANC. 

Note. We discuss the principal side of the problem and not the         

 practical ways of analytic continuation. 



Two-body potential scattering 

Knowing ε, ANC CABC , and fL(E) at  0E < ,  one can construct 

unambiguously a local potential V(r) using methods of the 

inverse scattering problem. As a result, the unique “analytic” 

potential would be selected out of set of PEPs, which leads to 

the needed analytic properties of the scattering amplitude. That 

potential describes all bound and continuum states of a given 

system.  

Characteristics of a bound state obtained by the direct analytic 

continuation of fL(E) from E 0 to E <0 may differ from the 

characteristics found by solving the bound state problem with the 
potential which describes correctly fL(E) at E 0. Why?  



In potential scattering theory 
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If k is continued to the complex plane, the terms 

arise in the integrand, which lead to the divergence of the integral 

if V(r) does not decrease rapidly enough at  r → . 
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fL(k) in the above form can be analytically continued to k = iκ  

(E=-ε) if (R.Newton, Scattering Theory): 
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Other possibilities of analytic continuation of amplitudes 

 
•  the explicit  form of  fL(E) at E 0 is known 

•  one succeeds in approximating fL(E) at E 0 by a certain  

analytic expression accurately enough 

Consider a trivial example:  

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φ(z) initially is defined only at Re z > Re a  since if this 

inequality is violated, the integral diverges.  

On the other hand, the integration can be performed explicitly: 
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analytic in the whole complex z plane with a pole 

at  z = a.  



Instructive example of a Bargmann-type 

potential 
(R.Newton, Scattering theory) 
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Normalized bound-state wave function  (ε = κ2/2): 
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f(k) can be analytically continued to the pole k = iκ and ANC is 

expressed through the residue at that pole: 
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On the other hand, the expression for ANC depending on the 

parameter d can be obtained from the explicit form of  φd: 

2/1

)(

)(4


















bd

b
Cd

Cd = C at d = 2 only. 



Why d = 2 is special? Because the asymptotics of Vd(r) at d = 2 is 

special: 
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is satisfied at d = 2 only. 



Thus the analytic continuation of the amplitude f(k) to the 

region of imaginary k allows one to select from the set of PEP 

Vd(r) the only “analytic” potential corresponding to d = 2 and 

find the correct value of the ANC C.  

PEPs obtained by the sypersymmetric transformation acquire 

the singularity of the type 1/r2  at the origin and, as well as Vd(r) 

at d  2, do not satisfy the integral analyticity condition.  
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Reactions with composite systems (nuclei) 

Description of elastic nucleon-nucleus or nucleus -nucleus 

scattering in the two-body potential approach  
corresponding potential is complex, nonlocal and energy- 

and angular momentum dependent.   

Nevertheless, one can still use analytic continuation of fL(E) to 

E <0 to find the binding energy and the VC and ANC. 

Analytic continuation can be performed in different ways. 



In the work (L.B., V.I.Kukulin et al., PRC 48, 2390 (1993))   

VC        and ANC    for the S state  of 6Li were found in  

two ways. 
d

G
Li6 d

C
Li6

1. Analytic approximation of experimental values of k cot δ 

using Pade approximants and subsequent continuation to E <0.  

2. Constructing the effective two-body dα potential Vdα(r)   

describing experimental δ and finding the two-body bound-

state wave function for this potential. Vdα(r) was written as a 

sum of oscillatory functions and satisfied the necessary 

analyticity conditions. 

The results of two different methods are in close agreement.  



Important comment 

In the general case, when B and/or C are 

composite systems, ANC CABC corresponds to the 

overlap integral IABC(r), which is normalized not to 

1 but to the spectroscopic factor SABC.  

However, if ANC is found in the two-body model, 

the corresponding two-body bound-state wave 

function should be normalized to 1. Normalizing 

this function to the independently determined 

spectroscopic factor is incorrect. 

 

 



Inference 

1. Using  the  fundamental  analyticity  property  of  scattering  

amplitudes and analytic continuation methods allows one to 

obtain information on characteristics of nuclear bound states 

(including ANCs) from the phase shift data. Thus the ambiguity 

related to the existence of phase-equivalent potentials is 

removed.  

2. The most effective method of analytic continuation  

analytic  approximation of the experimental values of k cot δ.  

3. If the continuation is performed by fitting a two-body potential,  

one should use the potential which decreases rapidly enough  

at  r → . One should put the spectroscopic factor equal to 1.  

 



Selected problems of nuclear astrophysics  

Introduction 

Nuclear reactions in stars and stellar explosions are responsible 

for the ongoing synthesis of chemical elements. Nuclear 

physics plays an important role as it determines the signatures 

of isotopic and elemental abundances found in the spectra 

of stars, novae, supernovae, and X-ray bursts.    

The rapid neutron capture process (r process) is responsible for 

the existence of about half of the stable nuclei heavier 

than iron. Capture cross sections for most of the nuclei involved 

are hard if not impossible to measure in the laboratory and 

indirect experimental approaches have to be employed to gather 

the relevant nuclear structure information.The same concerns 

(p,γ) and (p,α) reactions.   



The quantities used in nucleosynthesis calculations are reaction 

rates. A thermonuclear reaction rate is a function of the density 

of the interacting nuclei, their relative velocity and the reaction 

cross section. Extrapolation procedures are often needed to 

derive cross sections in the energy or temperature region of 

astrophysical relevance. While non-resonant cross sections can 

be extrapolated rather well to the low-energy region, the 

presence of continuum, or sub-threshold resonances, can 

complicate these extrapolations. 



As an example of  an important astrophysical reaction one may 

mention 7Be(p, γ) 8B, which plays a major role for the production 

of high energy neutrinos from the β-decay of 8B. These 

neutrinos come directly from the center of the Sun and are ideal 

probes of the Sun's structure. The reaction 12C (α,γ)16O is 

extremely relevant for the fate of massive stars. It determines if 

the remnant of a supernova explosion becomes a black hole or 

a neutron star. These two reactions are only two examples of a 

large number of reactions, which are not yet known with the 

accuracy needed in astrophysics. 



Thermonuclear cross-sections and reaction rates 

The number of reactions between a target j and a projectile k 

per unit volume and time can be expressed as                      

or, more generally, by 
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Here σ – cross section, v – relative velocity, nj and nk – 

number densities. For nuclei j and k in an astrophysical 

plasma, obeying a Maxwell-Boltzmann distribution, 
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Using (2), one can rewrite (1) as:  
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where           is the average over the temperature distribution, 

μjk  is the reduced mass.   
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Charged particles 

Experimentally, it is more convenient to work with the 

astrophysical S factor 
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(3) can be written as 
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If one assumes that S(E) is a constant, then the integrand in 

(5) is maximal at the Gamow energy 
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Measurements of cross sections at low energies are difficult 

and the extrapolation from higher energies can be 

complicated by the presence of unknown resonances. 



Nuclear reactions at the Sun 

The Sun belongs to the main-sequence stars,  the energy of 

which is due to the pp- и CNO- cycles   

Fig.1 
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According to the Standard Sun model ~99% of the Sun energy 

is generated by the pp-cycle, the ultimate result of which is the 

transmutation of 4 protons into helium 

Fig. 2 



Explosive nuclear burning in astrophysical environments 

produces short-lived, exotic nuclei, which again can be 

targets for subsequent reactions. In addition, it involves a 

very large number of stable nuclei, which are still not fully 

explored by experiments. Thus, it is necessary to be able to 

predict reaction cross-sections and thermonuclear rates with 

the aid of theoretical models, moreover that a direct cross-

section measurement is often not possible with existing 

experimental techniques. For the reliable extrapolation  

down to the stellar energies of the cross sections measured 

at the lowest possible energies in the laboratory such 

extrapolations should have as strong a theoretical foundation 

as possible. Theory is even more mandatory when excited or 

unstable nuclei are involved in the entrance channel. 
 



Nuclear reaction models 

1. Potential models assume that the physically important 

degrees of freedom are the relative motion between 

structureless nuclei in the entrance and exit channels. 

Interaction between them is described by the optical potential 

(usually in the Woods-Saxon form). DWBA is used practically 

for all astrophysical nuclear reactions. The only microscopic 

information is introduced in terms of spectroscopic factors 

and parameters of the optical potential. Deficiency – the optical 

parameters cannot be determined unambiguously. 



2. In microscopic models, nucleons are grouped into clusters 

and the completely antisymmetrized relative wave functions 

between the various clusters are determined by solving the 

Schrödinger equation for a many-body Hamiltonian with an 

effective nucleon-nucleon interaction. Typical cluster models 

are based on the Resonating Group Method (RGM) or the 

Generator Coordinate Method (GCM). They result in a 

complicate set of coupled integro-differential equations.  

 Modern nuclear shell-model calculations, such as the 

Monte-Carlo shell model, or the no-core shell model, are able 

to provide the wave functions for light nuclei. But so far they 

cannot describe scattering wave functions with a sufficient 

accuracy. 



Fig. 3 

Green dashed line - no-core shell model, red dotted line – 

RGM. Expt. Data – from 8 different works. It is evident that 

both theory and experiment need improvement for this 

important reaction.  



Field theories adopt a completely independent approach for 

nuclear physics calculations in which the concept of nuclear 

potentials is not used. The basic method of field theories is to 

start with a Lagrangian for the fields, from which one constructs 

the Feynman diagrams and make practical calculations. 

Effective field theory (EFT) by-passes complications of quantum 

chromodynamics (QCD) using the expansion over the small 

parameter, which is determined by the ratio of short-range and 

long-range (or “light” and “heavy”) scales. Practically for the  NN 

interaction that parameter is 

,
),,/1(




kBa
p

where a – NN scattering length, B and k – typical binding 

energy and nucleon momentum. «Heavy» scale is determined 

by the pion mass: Λ ~ mπ~ 140 MeV. 

(8) 



Reaction rates dominated by the contributions from a few 

resonant or bound states are often extrapolated to energies 

of astrophysical interest in terms of R-matrix fits. The appeal of 

these methods rests on the fact that analytical expressions can 

be derived from underlying formal reaction theories that allow for 

a rather simple parameterization of the data. However, the 

relation between the parameters of the R-matrix model and the 

experimental data is only quite indirect.    

A large fraction of the reactions of interest proceed through 

compound systems that exhibit high enough level densities for 

statistical methods to provide a reliable description of the 

reaction mechanism. The theoretical treatment of nuclear 

reactions leading to formation and decay of compound nuclei 

was developed by Ewing and Weisskopf based on two ideas: (a) 

the compound nucleus formation independence hypothesis as 

proposed by Niels Bohr, and (b) the reciprocity theorem, or time-

reversal properties of the underlying Hamiltonian. This allows 

one to relate capture and decay cross sections.  



Effects of electron screening 

The form of the astrophysical S factor given in Eq. (4) assumes 

that the electric charges of nuclei are “bare” charges. 

However, neither at very low laboratory energies, nor in stellar 
environments is this the case. In stars, the bare Coulomb 

interaction between the nuclei is screened by the electrons in 

the plasma surrounding them. If one measures reaction rates 

in the laboratory, using atomic targets (always), then atomic 

electrons screen as well. 



1. Stellar electron screening 

Coulomb interaction between two charges in a neutral 

plasma can be written as 
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where RD  is the Debye radius, that is the distance over 

which the electric field of a separated charge acts in the 

neutral medium consisting of positive and negative charged 

particles. In the weak screening approximation   

.,)(1)(
2

21
00

2

21

D

b

D R

eZZ
UUrV

R

r

r

eZZ
rV 










As a result the velocity of a reaction increases 
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2. Atomic electron screening 

The laboratory screening can be evaluated in the adiabatic 

approximation, in which one assumes that the velocities of the 

electrons in the target are much larger than the relative motion 

between the projectile and the target nucleus. In this case, the 

electronic cloud adjusts to the ground-state of a temporary 

“molecule” consisting of two nuclei separated by a time-

dependent distance R(t), at each time instant t. Since the 

closest approach distance between the nuclei is much smaller 

than typical atomic cloud sizes, the binding energy of the 

electrons will be given by the ground-state energy of the ZP + ZT 

atom. Energy conservation implies that the relative energy 

between the nuclei increases by 

).()( ttpe ZBZZBU  (12) 

Ue  is the screening potential.  



This energy increment enhances the fusion (tunneling) 

probability. Supposing that Ue /E is small and using (4) one gets 
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Fig. 4. Reaction  
3He(d,p) 4He. Dashed 

curve – bare nuclei, solid 

curve – screened nuclei 

with Ue = 219 eV (theory 

gives  Ue = 119 eV).  

The values of Ue needed to reproduce the experimental data 

are systematically larger than the theoretical ones by a factor 

of 2. 



Indirect methods of obtaining information on  

astrophysical nuclear reactions 

1. Trojan horse method 

The Trojan horse (TH) method (G.Baur, Phys. Lett. B 178 

(1986)) is an effective indirect method of determining cross 

sections of astrophysical binary reactions by measuring cross 

sections of reactions with three particles in the final state.  

Let we are interested in the A + x → B + y reaction  at  low 

(astrophysical) energies, and direct measurements are not 

possible due to the Coulomb barrier. Consider the reaction 

1 + A → 3 + B + y where 1 = 3 + x.  

Particle1 is the Trojan horse with particle x inside it. 



Consider the quasifree mechanism 
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At low momentum transferred from 1 to 3,  that mechanism 

could give the dominant contribution (or at least determine  

angular and energetic dependencies). The corresponding 

differential cross section is of the form  
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If  KF  and ψ2 are known,           could be extracted from 
diff2

~ .3diff

Often 1 = d,  x = p, 3 = n. 

(14) 

Fig. 5 



Using the energy and momentum conservation laws at the 

vertices of the diagram of Fig.5, one can show that the relative 

momentum k  of particles  A and x in the initial state of the 

reaction A + x → B + y remains non-zero at EAx  → 0. Hence the 

Coulomb barrier factor           does not appear in the expression 

for       , and it remains finite at EAx  → 0.  
2

~

           differs from the free cross section σ2  by particle x being  

virtual (off-shell), that is           describes the  A + x → B + y  

process half-off-shell. 

2
~

2
~

ie
2

Qualitative explanation: Particle x has already  overcome the 

Coulomb barrier in the initial state as a part of particle1. 

Note. Initial energy EA1 can be chosen large enough so that  

the reaction can be measured.  
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1. Initial energy EdLi  large (ELi  ~ 20 MeV). 

2. Choice of Eαα  determining        at  EpLi ~ 0. (EpLi= Eαα - Q ). 

3. Multiplication by the Coulomb penetratiion factor   

    σ2 (EpLi)  and   S(EpLi)  at  EpLi ~ 0. 
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Practically the absolute value of S(E) is found by the 

normalization to direct measurements at higher energies when 

the penetration factor .12  e

By comparing the cross section thus obtained with the laboratory 

one at lower energies one can obtain the information on electron 

screening effects. These effects, which are essential at very low 

energies, are described by multiplication of the reaction cross 

section  on the “bare" nucleus by               , what results in 

increasing  of the cross section (Ue is the screening potential). 

The Trojan horse cross section         is free from screening 

effects, and its comparison with directly measured allows one to 

obtain the information on Ue.     

EUee
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Fig. 7. S factor the 15N(p,α)12C reaction obtained by the TH 

method using the 15N(d,nα)12C reaction at Ed = 60 MeV (red 

dots). Black dots are the direct data. The black line 

corresponds to Breit-Wigner fit.   



Other examples of astrophysical reactions for which S(0)  

has been found by the TH method(C.Spitaleri, 

A.M.Mukhamedzhanov et al., INFN-LNS, Catania, Italy) 

 

• 7Li + p → α + α  (from  d+7Li → α+α+n)  (x=p, 1=d ) 

• 6Li + d → α + α (from 6Li+6Li → α+α+α)  (x=d, 1=6Li) 

 

•6Li + p → α +3He (from  d+6Li → α+3He+n) (x=p, 1=d ) 

 

•11B + p → 8Be + α (from d+11B →8Be+α+n) (x=p, 1=d ) 
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2. Coulomb dissociation method 

Use is made of experimental data on the dissociation of  a fast 

nucleus a  in the Coulomb field of a heavy nucleus A (e.g. lead)   

   a + A → b + c + A .    (16) 

The cross section of that process induced by a high energy 

virtual photon could be related to the photoeffect cross section

      , which by the time reversal is related to the 

sought-for cross section of the inverse process of the radiative 

capture     

Strong interaction effects could be reduced if one performs  

measurements at low scattering angles when the 

electromagnetic interaction dominates over  the nuclear one.    
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3. Method of asymptotical normalization coefficients (ANC)  

The ANC method allows one to determine S(E~0) for the 

radiative capture reactions using their peripheral character due 

to the Coulomb (or centrifugal) barrier.  

The cross section for a nonresonant radiative-capture reaction 

A(x,γ) B at zero relative energy depends only on the long-

distance behavior of the x+A wave function (and on the overlap 

of that extended wave function with B). The detailed short-range 

behavior of the scattering state x + A or bound state B is not 

relevant to the reaction mechanism. At large distances the 

overlap integral of the wave functions of A, x, and B is 
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The ANCs needed for the A(x,γ) B reaction could be found from 

the other nuclear reaction, the mechanism of which includes the 

A+x→B vertex. Usually ANCs are determined from peripheral 

transfer reactions using the DWBA. The particle energies in the 

initial and final states could be large enough. 

The check of the method has been performed by comparison  

the experimental data for                    and                   reactions.   F),HeO( 17316 d F),(O 1716 p

The ANC method was used for many radiative capture reactions. 

In particular,                      and                      reactions were used 

to obtain the S factor S17 (0) for the important process 

   

BeB)Be,(B 98710 CB)Be,(N 138714

B.),Be( 87 p



Other examples of using the ANC method to calculate S(E=0) 
for radiative capture processes (A.M.Mukhamedzhanov et al.) : 
       

4He(d, )6Li, 4He(3He, )7Be, 7,9Be(p, )8,10B, 8B(p, )9C,  
      11,13C(p, )12,14N, 12-14N(p, )13-15O, 17F(p, )18Ne,  
       20Ne(p, )21Na 

The check  has been made of the sensitivity of the cross section 

extracted to the parameters of the optical potential within the 

DWBA  (A.M.Mukhamedzhanov et al.) .  



Nowadays for numerous astrophysical reactions S(0) and its 

derivatives are determined by various methods (see examples in 

the Table). However for many important processes such data are 

absent, and the accuracy of the available data should be 

improved.  



Nuclear experiments using beams of rare (unstable) isotopes 

Two main mechanisms of  formation and separation of exotic 

nuclei 

• Beams of short-lived nuclei are formed in a thin target and 

are separated in-flight; 

• Exotic nuclei are formed and stopped  in a thick target and 

then are extracted and accelerated anew (on-line). 

Unstable nuclei take part in many astrophysical nuclear 

processes (r process, rp process). Lately experiments using 

accelerated beams of such nuclei are performed actively. 



Several examples of important astrophysical processes with 

unstable nuclei measured recently (Т1/2 in brackets): 

.F),)(71(O;O),)(110(F;Na),)(17(Ne

;Ne),)(122(O;Na),)(17(Ne;O),)(10(N;B),)(53(Be

171415182019

19152019141387

pspmps

spspmpd





Along with measuring of cross sections, measuring of masses 

of unstable nuclei is an important goal when dealing with 

radioactive beams. Two main methods of mass determination: 

By  energy release in a reaction and by deflection of ions in 

electromagnetic fields.   



Lately the considerable progress has been achieved in the 

experimental nuclear astrophysics and in developing theoretical 

methods of describing astrophysical processes. The further 

development  of that field is related with creating the next 

generation of installations (GSI/FAIR in Germany and FRIB in 

the USA), as well as with modernization of acting installations 

GANIL in France and TRIUMF in Canada. 



Analytic continuation of effective range 

expansion (ERE) 

One of the most widespread methods is the analytic 

continuation in energy of the data on the partial wave 

amplitude of elastic BC scattering to the pole corresponding to 

the bound state A. The most effective way of realization of this 

procedure is the analytic continuation of the effective range 

function KL (k2). This method was used (L.B., V.I.Kukulin et al.) 

to obtain S wave VCs and ANCs for the process 6Li →α + d, 

by Yu.V.Orlov et al. for the systems 3H, 2;3;5He, 5Li, 8Be, and by 

J.-M.Sparenberg et al. for the systems 16O + n, 16O + p, and 
12C + α. 



All above works treated one-channel elastic scattering. 

However, the description of scattering of particles with nonzero 

spins even in the absence of inelastic channels often demands 

account of channel coupling. The most typical situation induced 

by tensor forces is the case of two coupled channels 1 and 2 

with the same J but different L (L1 and L2 = L1 + 2). Examples: 

dα scattering, NN triplet scattering etc. In principle, coupled 

channels may differ not in L  but in channel spins. 

In the work [1] (L.B., Yad. Fiz., 2011. V.74. P.1008) it was 

considered the generalization of the ERE to the case of two 

coupled channels and using that expansion for the determination 

of VCs and ANCs. The consideration in [1] was carried out for the 

short-range interaction, which practically limited using the 

formalism developed to the reactions induced by neutrons. Now 

the results of [1] are generalized to account of the Coulomb 

interaction which radically changes analytic properties of 

scattering amplitudes and their behavior at low energies. 



The formalism developed could be applied to any two-channel 

nuclear system, for which the results of the phase-shift analysis 

are known (including the mixing parameter). One of similar 

important systems is 6Li in the α + d channel. The ANC values 

for this system determine the cross section of the radiative 

capture 4He(d,γ)6Li, which is the main process of 6Li formation in 

the big bang model. Direct measurements of that process at 

astrophysical energies are absent due to the smallness of the 

cross section. The data on the values of the VCs and ANCs for  
6Li→α + d (L= 0; 2) channel obtained dy different methods are 

characterized by a large spread. In the first place it refers to the 

D-state constants.     



The procedure of analytic continuation of the two-channel ERE 

described above has been applied to dα scattering using 

several sets of phase shifts (L.B. and D.A.Savin). The values of 

the VCs and ANCs for 6Li→α + d (L= 0; 2) were extracted.     

 
Using the data from the available phase-shifts analisis results in 
       G0

2 = 0.4 – 0.5 fm; C0 = 2.3 – 2.8 fm-1/2.  
Solution of Faddeev equations (neglecting the Coulomb 
interaction) gives    
   G0

2 = 0.3 fm; C0 = 2.0 fm-1/2  

Low accuracy of phase-shift analysis at low energies and 

simplicity of Faddeev equations used did not let to obtain 

accurate values of VC and ANC for L = 2. 

 

  C2 = 0.02 – 0.05 fm-1/2  



The procedure described above considers elastic channels only. 

On the other hand, low-lying inelastic thresholds might influence 

the ERE. The simplest way to allow for inelastic channels is to 

include into the ERE an additional term, which is complex at 

energies above an inelastic threshold.  

Including inelastic channels 

To guarantee that this procedure leads to the correct analytic 

behavior of scattering amplitudes at the threshold E = E0, one 

may choose that term proportional to (E - E0)
1/2  in case of a 

two-particle threshold and to  (E - E0)
2 ln(E - E0)

 in case of a 

three-particle threshold. 

We plan to apply that procedure to the dα scattering.   



Thank   you 


