Low-energy Phase Shifts using NCSM with Three NN Interactions

Myeong-Hwan $\text{Mun}^{a,*}$, Hyeong Il Kim^a , Young-Ouk Lee^a , Ik Jae Shin^b , J. P. Vary^c A. M. Shirokov^d , I. A. Mazur^e and A. I. Mazur^e

A SS HORSE (Single State Harmonic Oscillator Representation of Scattering Equation) method has been proposed [1] to calculate phase shifts of scattering as well as energies and widths of resonaces. This method can produce a phase shift directly from no-core shell model results without additional complexities. The applicability of the present approach has been tested and the low-energy phase shifts of scattering of nucleons by α particles with JISP16 NN interaction have been calculated [1] by I. A. Mazur, A. M. Shirokov, A. I. Mazur and J. P. Vary using this method. Therfore, as part of this onging research, we have calculated low-energy phase shifts of $n\alpha$ scatterings, which use the results of No-Core Shell Model (NCSM) [2] calculations for ⁵He with three NN interactions; JISP16 [3], NNLO_ $_{OPT}$ [4] and Daejeon16 [5]. The results are compared with $n\alpha$ experimental phase shifts.

^aKorea Atomic Energy Research Institue, Daejeon 34057, Korea

^bRare Isotope Science Project, Institute for Basic Science, Daejeon 34037, Korea

^cDepartment of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

^dSkobeltsyn Insititute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

^ePacific National University, Khabarovsk, Russia

^[1] I. A. Mazur, A. M. Shirokov, A. I. Mazur and J. P. Vary, arXiv:1512.03983v3.

^[2] B. R. Barrett, P. Navrátil and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).

^[3] A. M. Shirokov, A. I. Mazur, J. P. Vary and T. A. Weber, Phys. Lett. B 644, 33 (2007).

^[4] A. Ekström et al., Phys. Rev. Lett. 110, 192502 (2013).

^[5] A. M. Shirokov, I. J. Shin, Y. Kim, M. Sosonkina, P. Maris and J. P. Vary, arXiv:1605.00413v1.